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This review compiles knowledge about the mechanical and structural performance of brittle matrix 
composites. The overall philosophy recognizes the need for models that allow efficient 
interpolation between experimental results, as the constituents and the fibre architecture are 
varied. This approach is necessary because empirical methods are prohibitively expensive. 
Moreover, the field is not yet mature, though evolving rapidly. Consequently, an attempt is made 
to provide a framework into which models could be inserted, and then validated by means of an 
efficient experimental matrix. The most comprehensive available models and the status of 
experimental assessments are reviewed. The phenomena given emphasis include: the stress/strain 
behaviour in tension and shear, the ultimate tensile strength and notch sensitivity, fatigue, stress 
corrosion and creep. 
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son and Jensen [33], Table IV v 
Length of unbridged matrix crack w 
Fracture mirror radius B 
Notch size Cv 
Transition flaw size E 
Plate dimension E0 
Parameters found in the paper by Hutchin- /~ 
son and Jensen [33], Table IV E, 
Parameters found in the paper by Hutchin- 
son and Jensen [33], Table IV Ee 
Matrix crack spacing Em 

Saturation crack spacing EL 
Fibre volume fraction ET 
Fibre volume fraction in the loading direction Et 
Function related to cracking of 90 ~ plies E~ 
Fibre pull-out length G 
Sliding length (# 
Debond length ~tlp 
Shear band length f#Op 
Shape parameter for fibre strength distribu- K 
tion Kb 
Shape parameter for matrix flaw-size distri- K m 

bution KR 
Creep exponent Kti  p 

Creep exponent for matrix I0 
Creep exponent for fibre L 
Residual stress in matrix in axial orientation Lf 
Deviatoric stress Lg 
Time Lo 
Ply thickness N 
Beam thickness N~ 
Crack opening displacement (COD) 

COD due to applied stress 
COD due to bridging 
Sliding displacement 
Beam width 
Creep rheology parameter +o/Cy~ 
Specific heat at constant strain 
Young's modulus for composite 
Plane strain Young's modulus for composites 
Unloading modulus 
Young's modulus of material with matrix 
cracks 
Young's modulus of fibre 
Young's modulus of matrix 
Ply modulus in longitudinal orientation 
Ply modulus in transverse orientation 
Tangent modulus 
Secant modulus 
Shear modulus 
Energy release rate (ERR) 
Tip ERR 
Tip ERR at lower bound 
Stress intensity factor (SIF) 
SIF caused by bridging 
Critical SIF for matrix 
Crack growth resistance 
SIF at crack tip 
Moment of inertia 
Crack spacing in 90 ~ plies 
Fragment length 
Gauge length 
Reference length for fibres 
Number of fatigue cycles 
Number of cycles at which sliding stress 
reaches steady-state 
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Fibre radius A% 
R-ratio for fatigue (O'max/O-min) AI~ 0 

Radius of curvature F 
Tensile strength of fibre F~ 
Dry bundle strength of fibres Ff 
Characteristic fibre strength Fm 
UTS subject to global load sharing FR 
Scale factor for fibre strength Fs 
Pull-out strength Fx 
Threshold stress for fatigue 
Ultimate tensile strength (UTS) f~o 
UTS in the presence of a flaw 
Temperature 
Change in temperature 
Traction function for thermomechanical 
fatigue (TMF) 
Bridging function for TMF 
Linear thermal coefficient of expansion (TCE) 
TCE of fibre 
TCE of matrix 
Shear strain 
Shear ductility 
Characteristic length 
Hysteresis loop width 
Strain 
Strain caused by relief of residual stress upon 
matrix cracking 
Elastic strain 
Permanent strain 
Reference strain rate for creep 
Transient creep strain 
Sliding strain 
Pull-out parameter 
Friction coefficient 
Fatigue exponent (of order 0.1) 
Beam curvature 
Poisson's ratio 
Orientation of interlaminar cracks 
Density 
Stress 
Bridging stress 
Peak, reference stress 
Effective stress = [(3/2)susu] 1/2 

Stress in fibre 
Debond stress 
Stress in matrix 
Matrix cracking stress 
Stress on 0 ~ plies 
Creep reference stress 
Radial stress 
Residual stress 
Saturation stress 
Peak stress for traction law 
Lower bound stress for tunnel cracking 
Misfit stress 
Interface sliding stress 
Value of sliding stress after fatigue 
Constant component of interface sliding 
stress 
In-plane shear strength 
Critical stress for interlaminar crack growth 
Steady-state value of z after fatigue 
Displacement caused by matrix removal c/c 

Unloading strain differential 
Reloading strain differential 
Fracture energy 
Interface debond energy 
Fibre fracture energy 
Matrix fracture energy 
Fracture resistance 
Steady-state fracture resistance 
Transverse fracture energy 
Misfit strain 
Misfit strain at ambient temperature 

1. Introduct ion 
1.1. Rationale 
Various types of brittle matrix composite exist, based 
on ceramics, glasses, polymers and intermetallics. The 
respective designations are CMCs, GMCs, PMCs and 
IMCs. The fibres are used to impart sound structural 
characteristics, particularly to resist the propagation 
of cracks when either steady or cyclic loads are im- 
posed. However, all of the thermomechanical proper- 
ties are affected by the fibres, sometimes profoundly. 
As a result, the approaches needed for design and 
assuring reliability are completely different from those 
used for monolithic metals, ceramics and polymers. 
The underlying principles are explored in this review. 
Many of the basic ideas originated with the develop- 
ment of PMCs. In these materials, the matrix has 
relatively low modulus and strength, but moderate 
ductility. The fibres enhance the modulus and strength 
but reduce the ductility. The mechanisms that dictate 
the structural performance of PMCs reflect these fac- 
tors. In CMCs and GMCs, as well as many IMCs, the 
elastic properties of the fibres and matrix are similar 
and the matrix has low ductility. Consequently, the 
mechanisms that operate in response to thermo- 
mechanical loads are often quite different from those 
found in PMCs. The emphasis of this article is on 
composites exemplified by CMCs, GMCs and IMCs. 
The materials referenced in the following text are 
specified in Table I. 

Continuous fibre-reinforced brittle-matrix com- 
posites have a major advantage compared with the 
monolithic matrix. They exhibit an ability to retain 
good tensile strength in the presence of holes and 
notches [1-3]. This characteristic is important be- 
cause composite components generally need to be 
attached to other components, usually metals. At 

TABLE I CMC material systems 

SiC/CAS 

SiC/SiCcvI 

SiC/SiCpp 

sic/c 

Calcium alumino silicate glass ceramic with 
Nicalon fibres 
Silicon carbide produced by chemical vapor 
infiltration (CVI) with Nicalon fibres 
Silicon carbide matrix produced by a polymer 
precursor method with Nicalon fibres 
Carbon matrix produced by a combination of 
pyrolysis and CVI with Nicalon fibres 
The subscripts B and C refer to two different 
particulate phases in the matrix 
Carbon fibre reinforced carbon matrices 
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these attachments (whether mechanical or bonded), 
stress concentrations arise, which dominate the design 
and reliability. Inelastic deformation at these sites is 
crucial. It alleviates the elastic stress concentration by 
locally redistributing stress [4]. Such inelasticity is 
present in brittle matrix composites [5-8]. In associ- 
ation with the inelastic deformation, various degrada- 
tion processes occur which affect the useful life of the 
material. Several fatigue effects are involved [9, 10], 
cyclic, static and thermal. The most severe degrada- 
tion appears to occur subject to out-of-phase ther- 
momechanical fatigue (TMF). In addition, creep and 
creep rupture occur at high temperatures [11]. 

All of the mechanical characteristics that govern 
structural utility and life depend upon the constituent 
properties (fibres, matrix, interfaces), as well as the 
fibre architecture. Because the constituents are vari- 
ables, optimization of the property profiles needed for 
design and lifing become prohibitively expensive if 
traditional empirical procedures are used. The philos- 
ophy of this article is based on the recognition that 
mechanism-based models are needed, which allow effi- 
cient interpolation between a well-conceived experi- 
mental matrix. The emphasis is on the creation of 
a framework which allows models to be inserted, as 
they are developed, which can also be validated by 
carefully chosen experiments. 

1.2. Objectives 
The initial intent of this review is to address the 
mechanisms of stress redistribution upon monotonic 
and cyclic loading, as well as the mechanics needed to 
characterize the notch sensitivity [4, 12]. This assess- 
ment is conducted primarily for composites with two- 
dimensional reinforcements. The basic phenomena 
that give rise to inelastic strains are matrix cracks and 
fibre failures subject to interfaces that debond and 
slide (Fig. 1) [13-15]. These phenomena identify the 
essential constituent properties, which have the typical 
values indicated on Table II. 

Three underlying mechanisms are responsible for 
the non-linearity [16, 17]: (i) Frictional dissipation 
occurs at the fibre/matrix interfaces, whereupon the 

L 
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Frictional dissipation 

Figure ] The fundamental mechanisms that operate in CMCs as 
a crack extends through the matrix. 

sliding resistance of debonded interfaces, ~, becomes 
a key parameter. Control of ~ is critical. This behavi- 
our is dominated by the fibre coating, as well as the 
fibre morphology [18, 19]. By varying ~, the prevalent 
damage mechanism and the resultant non-linearity 
can be dramatically modified; (ii) the matrix cracks 
increase the elastic compliance [20]; (iii) the matrix 
cracks also cause changes in the residual stress distri- 
bution, resulting in a permanent strain [20]. 

The relative ability of these mechanisms to operate 
depends on the loading, as well as the fibre orienta- 
tion. It is necessary to address and understand the 
mechanisms that operate for loadings which vary from 
tension along one fibre direction to shear at various 
orientations. For tensile loading, several damage 
mechanisms have been found, involving matrix cracks 
combined with sliding interfaces (Fig. 2). These can be 
visualized by mechanism maps [21], which then be- 
come an integral part of the testing and design activ- 
ity. One damage mechanism involves mode I cracks 
with simultaneous fibre failure, referred to as class 
I behaviour (Fig. 2). Stress redistribution is provided 
by the tractions exerted on the crack by the failed 
fibres, as they pull out [12, 22-24]. A second damage 
mechanism involves multiple matrix cracks, with min- 
imal fibre failure referred to as class II behaviour (Fig. 
2). In this case, the plastic deformation caused by 
matrix cracks allows stress redistribution [3, 4]. 
A schematic drawing of a mechanism map based on 
these two damage mechanisms (Fig. 3) illustrates an- 
other important issue: the use of non-dimensional 
parameters to interpolate over a range of constituent 

Class I 
Matrix cracking + 

fibre failure 

Pull-out tractions 
redistribute stress 

Class II 

Matrix cracking: 
no fibre failure 

Matrix cracks 
redistribute s t ress  

Class Ill 

Shear damage by matrix cracking 

~ %  ~ o o ~ o  ~ O o O o  ~o Oo Oo 

Shear damage zone 
redistributes stress 

Figure 2 Three prevalent damage mechanisms occurring around 
notches in CMCs. Each mechanism allows stress redistribution by 
a combination of matrix cracking and fibre pull-out. 
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Figure 3 A proposed mechanism map that distinguishes class I and 
class II tensile behaviour. 

T A B L E  II Constituent properties of CMCs and methods of 
measurement 

Constituent property Measurement methods Typical range 

Sliding stress, ~ (MPa)  Push-out force 1 200 
Pull-out length, h- 
Saturation crack spacing, 
~s 
Hysteresis loop, 8a 
Unloading modulus, EL 

Characteristic strength, Fracture mirrors 1.2-3.0 
Sc (GPa) Pull-out length, t~- 

Misfit strain, f~ Bilayer distortion 0 - 2  x 10 .3  
Permanent strain, eo 
Residual crack opening 

Matrix fracture Monolithic material 5-50  
energy, Fm (J m - 2 )  Saturation crack spacing, 

ls 
Matrix cracking stress, 
6-mr 

Debond energy, Permanent strain, eo 0 - 5  
Fi ( J m  -2)  Residual crack opening, 

up 

properties. (For ease of reference, all of the most im- 
portant non-dimensional parameters are listed in 
Table III). On the mechanism map, the ordinate is 
a non-dimensional measure of sliding stress and the 
abscissa is a non-dimensional in situ fibre strength. 
A third damage mechanism also exists (Fig. 2), refer- 
red to as class III. It involves matrix shear damage 
prior to composite failure as a means for redistribut- 
ing stress. A proposed mechanism map is presented in 
Fig. 4 [25]. 
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Figure 4 A proposed mechanism map that distinguishes class III 
behaviour. The CMCs used for this figure are summarized in 
Table I. 

A summary of tensile stress-strain curves obtained 
for a variety of two-dimensional composites (Fig. 5) 
highlights the most fundamental characteristic rel- 
evant to the application of CMCs. Among these four 
materials (Table I), the SiC/CAS system is found to be 
notch insensitive in tension [3], even for quite large 
notches ( ~  5 mm long). The other three materials 
exhibit varying degrees of notch sensitivity [26, 27]. 
Moreover, the notch insensitivity in SiC/CAS arises 
despite relatively small plastic strains. These results 
delineate two issues that need resolution. (i) How 
much plastic strain is needed to impart notch insensi- 
tivity? (ii) Is the ratio of the "yield" strength to ulti- 
mate tensile strength (UTS) an important factor 
in notch sensitivity? This review will address both 
questions. 

The shear behaviour also involves matrix cracking 
and fibre failure [25]. However, the ranking of the 
shear stress-strain curves between materials (Fig. 6) 
differs appreciably from that found for tension (Fig. 5). 
Preliminary efforts at understanding this difference 
and for providing a methodology to interpolate 
between shear and tension will be described. 

Analyses of damage and failure have established 
that certain constituent properties are basic to com- 
posite performance (Table II). These need to be meas- 
ured, independently, and then used as characterizing 
parameters, analogous to the yield strength and frac- 
ture toughness in monolithic materials. The six major 
independent parameters are the interracial sliding 
stress, ~, and debond energy, F~, the in situ fibre prop- 
erties, St and m, the fibre/matrix misfit strain, ~,  and 
the matrix fracture energy Fro, as well as the elastic 
properties, E, v [4]. Dependent parameters that can 
often be used to infer the constituent properties in- 
clude: the fibre pull-out length [7, 14, 28], the fracture 
mirror radius of the fibres [29] and the saturation 
crack spacing in the matrix [30]. Approaches for 
measuring the constituent properties in a consistent, 
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Figure 5 Tensile stress-strain curves measured for a variety of 

two-dimensional CMCs. 
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straightforward manner will be emphasized and their 
relevance to composite behaviour explored through 
models of damage and failure. Moreover, the expres- 
sions that relate composite behaviour to constituent 
properties are often unwieldy, because a large number 
of parameters are involved. Consequently, throughout 
this article, the formulae used to represent CMC beha- 
viour are the simplest capable of describing the major 
phenomena. (The behaviour represented by these for- 
mulae is often applicable only to composites: the 
equivalent phenomenon being absent in monolithic 

ceramics. Consequently, the expressions should be re- 
stricted to composites with fibre volume fractions in 
the range of practical interest (fbetween 0.3 and 0.5). 
Extrapolation to small f would lead to erroneous 
interpretations, because mechanism changes usually 
occ u r . )  

In most composites with desirable tensile proper- 
ties, linear elastic fracture mechanics (LEFM) criteria 
are violated 1-31, 32]. Instead, various large-scale non- 
linearities arise, associated with matrix damage and 
fibre pull-out. In consequence, an alternative mechan- 
ics is needed to specify the relevant material and 
loading parameters and to establish design rules. 
Some progress toward this objective will be described 
and related to test data. This has been achieved using 
large-scale bridging mechanics (LSBM), combined 
with continuum damage mechanics (CDM) [12, 
22-243. 

The preceding considerations dictate the ability of 
the material to survive thermal and mechanical loads 
imposed for short durations. In many cases, long-term 
survivability at elevated temperatures dictates the ap- 
plicability of the material. Life models based on degra- 
dation mechanisms are needed to address this issue. 
For this purpose, generalized fatigue and creep models 
are required, especially in regions that contain matrix 
cracks. It is inevitable that such cracks exist in regions 
subject to strain concentrations and, indeed, are re- 
quired to redistribute stress. In this situation, degrada- 
tion of the interface and the fibres may occur as the 
matrix cracks open and close upon thermomechanical 
cycling, with access of the atmosphere being possible, 
through the matrix cracks. The rate of such degrada- 
tion dictates the useful life. 

1.3. Approach 
To address the preceding issues, this article is organ- 
ized in the following manner. Some of the basic ther- 
momechanical characteristics of composites are first 
established, with emphasis on interfaces and interface 
properties, as well as residual stresses. Then, the 
fundamental response of unidirectional (one-dimen- 
sional) materials, subject to tensile loading, is ad- 
dressed, in accordance with several sub-topics: (i) 
mechanisms of non-linear deformation and failure, (ii) 
constitutive laws that relate macroscopic performance 
to constituent properties; (iii) the use of stress-strain 
measurements to determine constituent properties in 
a consistent, straightforward manner; (iv) the simula- 
tion of stress-strain curves. The discussion of one- 
dimensional materials is followed by the application 
of the same concepts to two-dimensional materials, 
subject to combinations of tensile and shear loading. 
At this stage, it is possible to address the mechanisms 
of stress redistribution around flaws, holes, attach- 
ments and notches. In turn, these mechanisms suggest 
a mechanics methodology for relating strength to the 
size and shape of the flaws, attachment loading, etc. 

Data regarding the effects of cyclic loading and creep 
on the life of brittle matrix composites are limited. The 
concepts to be developed thus draw upon knowledge 
and experience gained with other composite systems, 
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Figure 7 The philosophy adopted for using models in the design 
and application of CMCs. 

such as metal matrix (MMCs) and polymer matrix 
(PMCs) materials. The overall philosophy is depicted 
in Fig. 7. 

2. Interfaces 
2.1. T h e r m o m e c h a n i c a l  r ep resen ta t i on  
The thermomechanical properties of coatings at 
fibre/matrix interfaces are critically important. A con- 
sistent characterization approach is necessary. The 
most commonly adopted hypothesis is that there are 
two parameters (Fig. 8). One is associated with frac- 
ture and the other with slip [33-36]. Fracture, or 
debonding, is considered to involve a debond energy, 
F~ [21, 37]. Slip is expected to occur with a shear 
resistance, T. A schematic representation (Fig. 9) illus- 
trates the issues. Debonding must be a mode II (shear) 
fracture phenomenon. In brittle systems, mode II frac- 
ture typically occurs by the coalescence of micro- 
cracks within a material layer [38, 39]. In some cases, 
this layer coincides with the coating itself, such that 
debonding involves a diffuse zone of microcrack dam- 
age (Fig. 9). In other cases, the layer is very thin and 
the debond has the appearance of a single crack. For 
both situations, it is believed that debond propagation 
can be represented by a debond energy, Fi, with an 
associated stress jump above and below the debond 
front [33]. Albeit that, in several instances, Fi is essen- 
tially zero [40]. When a discrete debond crack exists, 
frictional sliding of the crack faces provides the shear 
resistance. Such sliding occurs in accordance with 
a friction law [33-36, 40] 

1j = T O -- ]lO'rr (1) 

Bonded J" 
interface t 

Oe on0e  {iiiii interface 
with friction 1: 

Matrix crack --,-~ 

. . . . . . . .  l 
Debond crack 
front (Mode II 

..... ~ c r a c k  tip) 

f 

2R ID, 
2b 

O 

Figure 8 A basic cell model used for CMCs indicating the sliding 
and debonding behaviour. 

[Debonding I 

1; = "c o -/1fir Fracture energy 
F, 

/ 
. . . . . . . . . . . . .  ~ - ~ - Z ~ -  

. . . . . .  

Figure 9 The fibre sliding model indicating the location of debon- 
ding and frictional sliding. The cross-hatched region is a thin fibre 
coating. 

where ~t is the Coulomb friction coefficient, CYrr is the 
compression normal to the interface and "co is a term 
associated with fibre roughness. When the debond 
process occurs by diffuse microcracking in the coating, 
it is again assumed (without justification) that the 
interface has a constant shear resistance, 1;o. 

For debonding and sliding to occur, rather than 
brittle cracking through the fibre, the debond energy, 
Fi, must not exceed an upper bound, relative to the 
fibre fracture energy, Ff [37]. Calculations have sug- 
gested that the following inequality must be satisfied 
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r~ ~ (~)r~ (2) 

Noting that most ceramic fibres have a fracture en- 
ergy, Ff ~ 20 J m -2, Equation 2 indicates that the 
upper bound on the debond energy, F~ ~ 5 J m -2. 
This magnitude is broadly consistent with experience 
obtained on fibre coatings that impart requisite prop- 
erties [18, 41-44]. 

2.2. M e a s u r e m e n t  m e t h o d s  
Measurements of the sliding stress, x, and the debond 
energy, Fi, have been obtained by a variety of ap- 
proaches (Table II). The most direct involve displace- 
ment measurements. These are conducted in two 
ways: (i) fibre push-through/push-in, by using a small- 
diameter indentor [40]; (ii) tensile loading in the pres- 
ence of matrix cracks I-4, 45]. Indirect methods for 
obtaining ~ also exist. These include measurement of 
the saturation matrix crack spacing [30] and the fibre 
pull-out length [14]. The direct measurement methods 
require accurate determination of displacements, 
coupled with an analysis that allows rigorous decon- 
volution of load-displacement curves. The basic 
analyses used for this purpose are contained in papers 
by Hutchinson and Jensen [33], Liang and Hutchin- 
son [46], and Jero et al. [35]. The fundamental fea- 
tures are illustrated by the behaviour found upon 
tensile loading, subsequent to matrix cracking (Fig. 
11). The hysteresis that occurs during an unload/re- 
load cycle relates to the sliding stress, ~. Accurate 
values for �9 can be obtained from hysteresis measure- 
ments [4, 17, 47]. Furthermore, these results are rel- 
evant to the small sliding displacements that occur 
during matrix crack evolution in actual composites. 
(Information about T at larger sliding displacements is 
usually obtained from fibre push-through measure- 
ments.) The plastic strains contain combined informa- 
tion about r, D and Fi. Consequently, if ~ is already 
known, Fi can be evaluated from the plastic strains 
measured as a function of load, especially if s has been 
obtained from independent determinations [4]. The 
basic formulae that connect ~, Fi and ~ to the 

Figure 11 A typical load-unload cycle showing the parameters that 
can be measured which relate to the interface properties. 

stress-strain behaviour are presented in a subsequent 
section. 

2.3. Sliding mode l s  
The manipulations of interfaces needed to control 

can be appreciated by using a model to simulate the 
sliding behaviour. A simplified sliding model has been 
developed (Fig. 19) which embodies the role of the 
pressure at contact points, due to the combined effects 
of a mismatch strain and roughness [35, 36]. Coulomb 
friction is regarded as the fundamental friction law 
operating at contacts. Otherwise, the system is con- 
sidered to be elastic. The variables in the analysis are 
(i) the amplitude and wavelength of the roughness; (ii) 
the mismatch strain, s (iii) the Coulomb friction coef- 
ficient, g; and (iv) the elastic properties of the constitu- 
ents. With these parameters as input, the sliding can 
be simulated for various loading situations. One set of 
simulations conducted for comparison with fibre 
push-out tests (Fig. 12) illustrates the relative import- 
ance of each of the variables. For this set, the fibre 
roughness was characterized using a fractal method. 
The roughness within the section was selected at ran- 
dom, from the measured amplitude distribution, caus- 
ing some differences in the push-out spectrum for each 
simulation. By using this simulation, substantial sys- 
tematic changes in the sliding resistance have been 
predicted when the friction coefficient, the mismatch 
strain and the roughness amplitude are changed. 
(There are only minor effects of Poisson's ratio). Gen- 
erally, the mismatch strain and the roughness can be 
measured independently [36]. Consequently, the com- 
parison between simulation and experiment actually 
provides an estimate of the friction coefficient, la. If this 
is found to be within.an acceptable range, the inferred 
la is, thereafter, used to predict how r can be expected 
to vary as either the misfit or the roughnesses are 
changed, if g is fixed. This approach indicates 
that p ~ 0.1 for either carbon or BN coatings [48], 
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Figure 12 Simulation of the effects of the key variables on the 
push-out behaviour: (a) roughness, (b) residual stress, (c) friction 
coefficient. 

whereas p ~ 0.5 for oxide coatings [49]. Such values 
are compatible with macroscopic friction measure- 
ments made on bulk materials and thus appear to be 
reasonable. However, much additional testing is 
needed to validate the sliding model. 

2.4. Experimental  results  
Most of the experience with brittle matrix composites 
is on carbon, BN, or molybdenum fibre coatings [18, 
19, 41-44, 50]. Such coatings usually have a relatively 
low debond energy, F~, and can provide a range of 
sliding stresses, �9 (Table II), as illustrated by compari- 

son of three different carbon coatings on sapphire 
fibres in TiA1 (Fig. 13a). A considerable range in ~ has 
even been achieved with carbon coatings. Values be- 
tween 2 and 200 MPa have been found. Furthermore, 
this range obtains even at comparable values of the 
misfit strain. The different values may relate to fibre 
roughness. Roughness effects are best illustrated by 
the sliding behaviour of sapphire fibres in a glass 
matrix. During fibre manufacture, sinusoidal asperi- 
ties are grown on to the surface of the sapphire fibres. 
The sinusoidal fibre surface roughness is manifest as 
a wavelength modulation in the sliding stress during 
push-out (Fig. 13b) [36]. However, there must also be 
influences of the coating thickness and microstructure. 
A model that includes an explicit influence of the 
coating has yet to be developed. 

In many brittle matrix composites, the debond en- 
ergy, Fi, has been found to be negligibly small 
(Fi < 0.1 J m-2). Such systems include all of the glass 
ceramic matrix systems reinforced with Nicalon fibres, 
which have a carbon interphase formed by reaction 
during composite processing. Low values also seem to 
obtain for SiC matrix composites with BN fibre coat- 
ings. The clear exception is SiC/SiC composites made 
by chemical vapour infiltration (CVI), which use a car- 
bon interphase, introduced by chemical vapour depos- 
ition [51]. For such composites, the non-linear beha- 
viour indicates a debond energy, F~ ~ 1 - 5 J m  -2 
(Table II). The interphase in this case debonds by 
a diffuse damage mechanism [52]. Moreover, it has 
been found that the coating behaviour can be changed 
into one with Fi ,,~ 0, either by heat treatment of the 
composite (after CVI) or by chemical treatment of the 
fibre [51]: A basic understanding of these changes in 
F~ does not exist. 

2 . 5 .  E n v i r o n m e n t a l  i n f l u e n c e s  

There are temperature and environmental effects on 
and Fi. There are also effects on �9 of fibre displace- 

ment and cyclic sliding (Fig. 13c). These effects can 
critically influence composite performance. The basic 
effect of temperature on 1: [53] concerns changes in the 
misfit strain and friction coefficient, evident from the 
simulations shown in Fig. 12. Environmental influen- 
ces can be pronounced, especially in oxidizing 
atmospheres. The major effects arise either at high 
temperatures, or during fatigue (a consequence of in- 
ternal heating associated with cyclic frictional slid- 
ing at the interfaces). When either carbon or molyb- 
denum coatings are used, �9 initially decreases upon 
either exposure or fatigue (Fig. 13d), because a gap is 
created between the fibre and matrix, caused by elim- 
ination of the coating, through volatile oxide forma- 
tion [7, 18, 53-55]. This process occurs when the local 
temperature reaches ~ 800 ~ The subsequent beha- 
viour depends on the fibres. When SiC fibres are used, 
further exposure causes SiO2 formation [56]. This 
layer gradually fills the gap, leading to large values of 
r. Eventually, a "strong" interface bond forms (with 
large Fi) that produces brittle behaviour, without fibre 
pull-out. Conversely, oxide fibres in oxide matrices 
are inherently resistant to this embrittlement 
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phenomenon [18, 49] and are environmentally desir- 
able, provided that the matrix does not sinter to the 
fibres. 

3. Residual stresses 
3.1. Origin 
Many composite properties are sensitive to the resid- 
ual stress caused by the misfit strain, fL between fibre 
and matrix. Measurement of these stresses thus be- 
comes an important aspect of the analysis and predic- 
tion of properties. These stresses arise at inter- and 
intra-laminate levels�9 Within a laminate, the axial 
stress in the matrix is [57] 

q = ( E m / E L ) { 7  T (3) 

where ~T is the misfit stress, which is related to the 
misfit strain by (Tables III and IV) [17, 33] 

(yT = (C2/c1)Em~" ~ (4) 

The average residual stress, c~ R, in a 0/90 laminate, 
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Figure 13 Some typical fibre push-out measurements conducted on 
CMCs and intermetallic matrix composites: (a) A1203/TiA1 within 
C/AI203 double coatings, (b) SiC/glass (smooth) and A12Oa/glass 
(rough) showing effect of fibre roughness, (c) SiC/Ti with carbon 
coating showing influence of fatigue, (d) AI203/AI2Oa with fugitive 
molybdenum coating. 

with uniform laminate thickness depends on constitu- 
ent properties in approximate accordance with 
[58, 59] 

f~(1 - f )  EL(1 -- Em/EL) (~R ~ (5) 
(1 + VLT)(1 + EL/E~) 

Note that the residual stress ~R ~ 0 as the elastic 
properties become homogeneous ( E f - - - - E m =  EL). 

While connections between the residual stresses and 
constituent properties are rigorous, experimental de- 
termination is still necessary, because f~ is not readily 
predictable. In general, f~ includes terms associated 
with the thermal expansion difference, ~f - am, as well 
as volume changes that occur either upon crystalliza- 
tion or during phase transformations. For  CVI sys- 
tems, "intrinsic" stresses may also be present. 

The temperature dependence can be assessed from 
the thermal expansion mismatch, by using 

= ~'~0 -- ((2m --  ~f)ATR (6) 

where ATR is the temperature change from ambient 
and flo is the ambient misfit strain, measured using the 
procedures outlined below. 
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T A B L E  l I I  I n v e n t o r y  of  non-dimensional functions 

Relative stiffness 
Sliding index 
Cyclic sliding index 
Loading index 
Cyclic loading indices 

Bridging index 
Cyclic bridging indices 

Misfi t  index 

D e b o n d  index 

Hysteresis index 
Crack spacing index 
Matrix cracking index 

�9 Residual stress index 
Flaw index 
Flaw index for bridging 
Flaw index for pull-out 

---, fEf/(1 -- f ) E  m 
~'- ~ ~[zoE/~Ef] 1/2 

A J-  -* ~['CoE/A(yEf] 1/2 

g --~ [2R~/f~2a~o] 
AN ~ [2R(A~)/f~2a'co] 

A N  o --, [2R(Ao)/ f~2ao%] 
Orb --* [2R CXb/f ~ a aZo ] 
Agb "* [2R(Aob)/f~2 a'co] 
A E  T --* [ 2 R E f ( ~ f  - -  ~m)AT/~2f%a] 

XT --~ (YT = (c2/Cl  ) E m ~ / e  p 
~p 

x ,  - .  e_, = ( 1 / c O ( a m r d R e ~ ) , j  ~ _ XT 
O'p 

~'~ "-* b2(1 - a l f ) 2 R 6 2 / 4 ~ E m f  ~ 
~,a ~ Fra(1 - - f ) 2 E f E m / f ' C 2 E L R  

M --+ 6"cFmf2Ef/(1 - f )E2mREL 

-~ ~ E l f ' ~ E L ( 1  - v) 
~ aoS2/EtF 

~r ~ I f / ( 1  - f ) ]2(EfEL/E2) (aoz /RS~)  

ddp --* (ao/h)(Sp/EL) 

T A B L E  I V  S u m m a r y  of  H J  [33]  constants for type II boundary 
conditions 

al = Ef/E 

( l  - - f ) E f [ 1  + El~El 
a 2 

[ E f  + (1 --  2 v ) E ]  

b 2 =  

(1 + v )Em{2( l  - v )2Ef  + (1 - 2 v ) [ 1  - v + f ( 1  + v ) ] ( E  m - Ef)} 

(1 - v ) E f [ ( l  + v )Eo  + (1 - v)Em] 

f ( ~  ~- V){ ( l  - - f ) ( 1  -}" V)(1 - -  2 v ) ( E f  --  Urn) -~" 2(1 --  v )2Em} 
b 3 = 

(1 - v)(1 - f ) [ ( 1  + v ) E  o + (1 - v)Em] 

(1 - fol)(b 2 -[- b3) 1/2 

c,  - 2 f  

a2(b2 + b3) 1/2 
C2 

2 

1 - - a l f  
Cl/C 2 ~ -  

a2f  

with 

E = f E f  + (1 - - f )Em 

E o = ( 1 - - f ) E f  + f E m  

approach having high reliability involves curvature 
measurements on beams made from 0/90 composites 
[60]. For such material, polishing to produce one 0 ~ 
layer and one 90 ~ layer results in elastic bending 
(Fig. 14) (unless the material has a plain weave). The 
curvature, ~c, is related to the residual stress by [60] 
(note there is a typographical error in Beyerle et al. 
[10]: the width w was omitted in their equation) 

o R = ELIoK/t~w (7) 

where Io is the second moment of inertia, tb is the 
beam thickness and w the beam width. 

When only one-dimensional material is available, 
the preferred approach is to measure the displace- 
ment, A R, that occurs when a section of matrix, length 
Ld, is removed by dissolution (when possible). The 
residual stress in the matrix is then [61] 

q = E f f A " / ( 1 - - f ) L d  (8) 

Typical results are plotted on Fig. 15. 
The Raman microscope can be used in two different 

modes to measure the residual stress. Both methods 
rely of shifts in Raman peaks induced by strain. A flu- 
orescence spectroscopy method [62, 63] uses the flu- 
orescence peak created by impurities and dopants 
(such as chromium) in oxide fibres, particularly 
A1203. The capability of the method has been 

Figure 14 A schematic illustration of the beam bending effect used 
to evaluate the residual stress. 

3.2.  Measurement  m e t h o d s  
Several experimental procedures can be used to 
measure the residual stresses. The four preferred 
methods involve (a) diffraction (X-ray or neutron), (b) 
beam deflection, (c) Raman microscopy and (d) per- 
manent strain measurements. X-ray diffraction 
measurements give lattice strains. They have the lim- 
itation that the penetration depth is small, such that 
only near-surface information is obtained. Moreover, 
in composites, residual stresses are redistributed near 
surfaces [46]. Consequently, a full stress analysis is 
needed to relate the measured strains to either q or o R 
and the method has not been widely used. 

Beam deflection and permanent strain measure- 
ments have the advantage that they provide informa- 
tion averaged over the composite. The results thus 
relate directly to the misfit strain, f~. An experimental 
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TABLE V Important constituent properties for two typical 
CMCs: comparison between SiC/SiC and SiC/CAS [4] 

Property Material 

SiC/CAS SiC/SiC 

Matrix modulus, E m (GPa) 100 400 
Fibre modulus, Ef (GPa) 200 200 
Sliding stress, r (MPa) 15-20 50-150 
Debond energy, Fi (Jm -z) ~ 0.1 ~ 4 
Residual stress, q (MPa) 80-100 50-100 
Fibre strength, Sr (GPa) 2.0 2.2 1.3-1.6 
Shape parameter, m 3.3-3.8 4.2-4.7 
Matrix fracture energy, Fm (Jm -2) 20-25 5-10 

demonstrated for A1203 fibre-reinforced materials. 
The second method applies to ceramic fibres that 
contain carbon (such as Nicalon and carbon itself). It 
relies on the shifts in the peaks of the Raman spectrum 
for carbon [64]. The method has been applied to 
Nicalon fibre-reinforced CMCs. 

The permanent strains that arise following tensile 
plastic deformation also relate to f2. Measurement of 
these strains allows fl to be assessed [17]. The relevant 
formulae are presented later in Section 5.4. 

3.3. Experimental results 
Experimental results are mostly consistent with a mis- 
fit strain that derives from the thermal expansion 
difference, 0~ m - -  ~f, and the cooling range from the 
processing temperature. Examples for SiC/CAS and 
SiC/SiCcw are given in Table V. However, volumetric 
changes that occur in the matrix contribute to 
f~o when relatively low-temperature processing steps 
are used. For example, matrix crystallization of glass 
ceramics can induce substantial misfit [64]. 

4. Fibre properties 
4.1. Load sharing 
The strength properties of fibres are statistical in 
nature. Consequently, it is necessary to apply prin- 
ciples of weakest link statistics, which define the prop- 
erties of fibres within a composite. The initial decision 
to be made concerns the potential for interactions 
between failed fibres and matrix cracks. It has gener- 
ally been assumed that matrix cracks and fibre failure 
are non-interacting and that global load sharing 
(GLS) conditions obtain (however, a criterion for GLS 
breakdown has yet to be devised) [14, 18, 65, 66]. In 
this case, the stress along a material plane that inter- 
sects a failed fibre is equally distributed among all of 
the intact fibres. Experience has indicated that these 
assumptions are essentially valid for a variety of 
CMCs. 

Subject to the validity of GLS, several key results 
have been derived. Two characterizing parameters 
emerge [67]: a characteristic length 

gg,+ l = Lo(SoR/'c)" (9) 

and a characteristic strength 

S2 +1 = S ~ [ L o ~ / R ]  (10) 

where m is the shape parameter that characterizes the 
fibre strength distribution, So the scale parameter, 
Lo the reference length, and R the fibre radius. Various 
GLS results based on these parameters are described 
below. 

When fibres do not interact, analysis begins by 
considering a fibre of length 2L divided into 2N ele- 
ments, each of length gz. The probability that a fibre 
element will fail, when the stress is less than cy, is the 
area under the probability density curve [68, 69] 

gqb(cO = ~oo g(S)dS (11) 

where g(S)dS/Lo represents the number of flaws per 
unit length of fibre having a "strength" between S and 
S + dS. The local stress, ~, is a function of both the 
distance along the fibre, z, and the reference stress, Ob. 
The survival probability, Ps, for all elements in the 
fibre of length 2L is the product of the survival prob- 
abilities of each clement [70] 

N 
Ps(Ob, L) = H [1 -- ~qb(Ob, z)] (12) 

n = - N  

where z = n6z and L = Ngz. Furthermore, the prob- 
ability, (I)s, that the element at z will fail when the peak, 
reference stress is between Ob and Ob + SOb, but not 
when the stress is less than Oh, is the change in 6qb 
when the stress increased by 5~b divided by the sur- 
vival probability up to ~b, given by [68, 69, 71] 

(I)s((~b, Z) -= I1 -- gqb(Ob, z)] -1 [_ 8~u d(~b 

(13) 
Denoting the probability density function for fibre 
failure by (I) (~b, Z), the probability that fracture occurs 
at a location z, when the peak stress is (~b, is governed 
by the probability that all elements survive up to 
a peak stress (~b, but that failure occurs, at z, when the 
stress reaches ~b [71--73]. It is given by the product of 
Equation 12 with Equation 13 

N 
[ I  [1 - g ~ ( o ~ ,  z ) ]  
-N 

(I)s ((~b, Z) 5Ob gZ = 
[1 - g~(ob, z)] 

• L[-eg4'('%'ee~, z)] dob (14) 
While the above results are quite general, it is conveni- 
ent to use a power law to represent g(S) 

~ g(S)dS (el~So) m (15) 

Alternative representations of g(S) are not warranted 
at the present level of development. Using this as- 
sumption, Equation 14 becomes [72J 

{-- 2 (L~cY(ff%'z)~m dZ ; 
O((~b,Z) = exp JoL- So J Lo)  

F or(Oh' z ) l "  (16) 

This basic result has been used to obtain solutions for 
several problems [14, 72, 74] described below. 
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4.2. The ul t imate  tensi le  s t r eng th  
When multiple matrix cracking precedes failure of the 
fibres in the 0 ~ bundles, the load along each matrix 
crack plane is borne entirely by the fibres. Neverthe- 
less, the matrix has a crucial role, because stress trans- 
fer between the fibres and the matrix still occurs 
through the sliding resistance, "c. Consequently, some 
stress can be sustained by the failed fibres. This stress 
transfer process occurs over a distance related to the 
characteristic length, g~. As a result, the stresses on the 
intact fibres along any plane through the material are 
less than those experienced within a "dry" fibre bundle 
(in the absence of matrix). The transfer process also 
allows the stress in a failed fibre to be unaffected at 
distance ~8~ from the fibre fracture site (Fig. 16). 
Consequently, composite failure requires that fibre 
bundle failure occurs within ~ [143. This phenom- 
enon leads to an ultimate tensile strength (UTS) inde- 
pendent of gauge length, Lg, provided that Lg > B e. 
(At small gauge lengths (Lg < ~e), the UTS becomes 
gauge length dependent and exceeds S, [66].) The 
magnitude of the UTS can be computed by first evalu- 
ating the average stress on all fibres, failed plus intact, 
along an arbitrary plane through the material. Then, 
by differentiating with respect to the stress on the 
intact fibres, in order to obtain the maximum, the 
UTS becomes 

Sg = f~SoF(m) (17a) 

with 

F(m) = [2/(m + 1)] u(" + ~) [(m + 1)/(m + 2)] (17b) 

It is of interest to compare this result to that found for 
a "dry" bundle. Then, the "fibre bundle" strength, Sb, 

//~. ~ibre f~ail,~u re ~4 I~T/.~ ~ 

�9 �9 
- /  h2AFibre crack I __ 

�9 
�9 �9 

� 9 1 6 9 1 6 9 1 6 9  
Figure 16 A schema t i c  i l lus t ra t ion  o f  the  l oad  t ransfer  p rocess  f r o m  

fai led fibres. 
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depends on the gauge length in accordance with [75] 

Sb ~_ fSo(Lo/Lg)l/me 1/m (17c) 

In all cases, Sg > Sb. 
As the load increases, the fibres fail systematically, 

resulting in a characteristic fibre fragment length. At 
composite failure, there can be multiple cracks within 
some fibres. The existence of many fibre fragments is 
still compatible with a high ultimate tensile strength (a 
good analogy being the strength of a wire rope). How- 
ever, a diminished creep strength may ensue, as 
elaborated below (Section 9). 

The above results are applicable to tensile loading. 
When a bending moment is applied, the behaviour is 
modified. In this case, the stress is redistributed by 
both matrix cracking and fibre failure. Predictions of 
the UTS in pure flexure (Fig. 17) indicate the salient 
phenomena [66]. 

4.3. Fibre pull-out 
In CMCs with good composite properties, fibre pull- 
out is evident on the tensile fracture surfaces 1-73]. 
Various measurements conducted on these surfaces 
provide valuable information. Regions with highly 
correlated fibre failures, with minimal pull-out, are 
indicative of manufacturing flaws. Such flaws often 
occur in regions where fibre coating problems existed. 
In zones where fibre failures are uncorrelated, the 
distribution of fibre pull-out lengths provides essential 
information. The pull-out lengths are related explicitly 
to the stochastics of fibre failure [14, 72]. The basic 
realization is that, on average, fibres do not fail on the 
plane of the matrix crack, even though the stress in the 
fibres has its maximum value at this site. This unusual 
phenomenon relies exclusively on statistics, wherein 
the locations of fibre failure may be identified as a dis- 
tribution function that depends on the shape para- 
meter, m. Furthermore, the mean pull-out length, h, 
has a connection with the characteristic length, gr 
Consequently, a functional dependence exists, dictated 
by the non-dimensional parameters, "ch/RSr and m. If 
it is assumed that sliding is controlled by a constant 
stress, z, dictated by roughness and friction and that 
the shape parameter for the fibres is unaffected by 
the details of the friction, the pull-out length can be 



expressed as [14] 

&/Rso = (18) 

There are two bounding solutions for the function 
k (Fig. 18). Composite failure subject to multiple 
matrix cracking gives the upper bound. Failure in the 
presence of a single crack gives the lower bound. 

Because of pull-out, a frictional pull-out resistance 
exists, which allows the material to sustain load, be- 
yond the UTS. The associated "pull-out" strength, Sp, 
is an important property of the composite (Fig. 19), 
The strength, Sp, is given by [76] 

Sp = 2~fh/R 

= 2fS~Z(rn) (19) 

4.4. Influence of flaws 
The preceding results are applicable provided that 
there are no unbridged segments along the matrix 
crack. Unbridged regions concentrate the stress in the 
adjacent fibres and weaken the composite [12, 77, 78]. 
Simple linear scaling considerations indicate that the 
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1.0 

r 0.8 

0.6 

t -  

0.4 

r -  

# 0.2 

0.0 
0.0 

I i I I i 

G S 
Bridging ~A~ ~ g 

i \ , plus I 1 ~ "  8. 
\ \ ' , ~  pull-out ~/X\~---~ = 8 
\ . . . . . . .  _,, .so, so=o  

o i B "dging I 

1 I I I I I I I I I I I I I I 

0.5 1,0 1.5 2.0 2.5 3.0 3.5 

F,awinde , 3,2 / 
i1-  Rsg) 

Figure 19 The effect of unbridged regions, length 2a0, on the ulti- 
mate tensile strength. 

diminished UTS depends on a non-dimensional flaw 
index (Table III) 

d = aoS2/ELr (20) 

where F is the "toughness", reflected in the area under 
the stress-displacement curve for the bridging fibres, 
E is Young's modulus and 2a0 is the length of the 
unbridged segment. The flaw index, ~d, can be speci- 
fied, based on F, using large-scale bridging mechanics 
(LSBM). The dependence of the UTS, designated S*, 
on the flaw index d can be determined from LSBM 
by numerical analysis [78] (Fig. 19). The results reveal 
that the ratio Sp/Sg, is an important factor. Notably, 
relatively large values of the "pull-out" strength allevi- 
ate the strength degradation caused by unbridged 
cracks. 

4.5. In si tu strength measurements  
In general, composite consolidation degrades fibre 
properties and it becomes necessary to devise proced- 
ures that allow determination of So and m to be evalu- 
ated relevant to the fibres within the composite. This is 
a challenging problem. In some cases, it is possible to 
dissolve the matrix without further degrading the 
fibres and then measure the bundle strength [79]. This 
is not feasible with most CMCs of interest. The follow- 
ing two alternatives exist. 

Some fibres exhibit fracture mirrors when they fail 
within a composite (e.g. Nicalon). A semi-empirical 
calibration has been developed that relates the mirror 
radius, am, to the in situ fibre tensile strength, S, given 
by (Fig. 20). 

S = 3.5(EfFf/am) 1/2 (21) 

where Ff is the fracture energy of the fibre [7, 29, 80]. 
By measuring S on many fibres, and then plotting the 

J 
Figure 20 A schematic illustration of a fracture mirror and the 
dimension am used to predict the in situ strength. 
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Figure 21 In situ strength distributions measured for Nicalon fibres 
in three CMCs, using the fracture mirror approach. (�9 SiC/C, (O) 
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cumulative distribution, both the shape parameter, m, 
and the characteristic in situ fibre strength, So, can be 
ascertained. Results of this type have been obtained 
for Nicalon fibres in a variety of different matrices 
(Fig. 21). This compilation indicates the sensitivity of 
the in situ strength to the composite processing ap- 
proach. This fibre strength variation is also reflected in 
the range in UTS found among CMCs reinforced with 
these fibres (Fig. 5). 

A problem in implementing the fracture mirror ap- 
proach arises when a significant fraction of the fibres 
does not exhibit well-defined mirrors. Those fibres 
that do not have mirrors usually have a smooth frac- 
ture surface. It has thus been assumed that these are 
the weakest fibres in the distribution [61, 80]. The 
order statistics used to determine G(S) are adjusted 
accordingly. This assumption has not been validated. 

The only alternative approaches for evaluating So, 
known to the authors, are based on pull-out and 
fragment length measurements [28-]. Both quantities 
depend on Sc and m, as well as z. Consequently, if z is 
known, Sc can be determined. For example, m can be 
evaluated by fitting the distribution of fibre pull-out 
lengths to the calculated function. Then, S~ can be 
obtained for the mean value, h, using Equation 12. 
This approach has not been extensively used and 
checked. 

4.6. Experimental results 
Several studies have compared the multiple matrix 
cracking G L S  prediction, Sg (Equations 17a-c) with 
the UTS measured for either one- or two-dimensional 
CMCs. In most cases, the UTS is in the range (0.7-1) 
Sg, as indicated in Fig. 22. The two obvious discrepan- 
cies are the SiC/SiCcw material and one of the SiC/C 
materials. In these cases, the GLS predictions overesti- 
mate the measured values. Moreover, "c is relatively 

large for both materials, as reflected in the magnitude 
of the stress concentration index (Fig. 22). Two factors 
have to be considered as these results are interpreted. 
(i) In some materials, the fraction of fibres that exhibit 
mirrors is not large enough to provide confidence in 
the inferred values of So and m. This issue is a particu- 
lar concern for the SiC/SiCcw material. (ii) In other 
materials, manufacturing flaws are present that pro- 
vide unbridged crack segments, which cause the UTS 
to be smaller than Sg (Section 4.4). 

With the above provisos, it is surprising that the 
UTS measured for several two-dimensional CMCs is 
close to the GLS prediction. In these materials, cracks 
exist in the 90 ~ plies at low stresses and these cracks 
should concentrate the stress on the neighbouring 
fibres in the 0 ~ plies. The UTS would thus be expected 
to follow the strength degradation diagram (Fig. 19). 
That this weakening does not occur remains to be 
explained. It probably reflects the influence on the 
strength degradation of elastic anisotropy, as well as 
pull-out (Fig. 19). 

5. Matr ix  cracking in unidirectional 
materials 

The development of damage in the form of matrix 
cracks within one-dimensional CMCs subject to ten- 
sile loading has been traced by direct optical obser- 
vations on specimens with carefully polished surfaces 
and by acoustic emission detection [6, 8, 55, 61], as 
well as by ultrasonic velocity measurements [81]. In- 
terrupted tests, in conjunction with sectioning and 
SEM observations, have also be used. Analyses of the 
matrix damage found in one-dimensional CMCs 
provides the basis upon which the behaviour of two- 
and three-dimensional CMCs may be addressed. The 
matrix cracks are found to interact with predomi- 
nantly intact fibres, subject to interfaces that debond 
and slide. This process commences at a lower bound 
stress, ~mc. The crack density increases with increase 
in stress above (Ymc and may eventually attain a satu- 
ration spacing, ds, at stress ~s. The details of crack 
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evolution are governed by the distribution of matrix 
flaws. The matrix cracks reduce the unloading elastic 
modulus, E, and also induce a permanent strain, 
so (Fig. 9). Relationships between/~, to and constitu- 
ent properties provide the key connections between 
processing and macroscopic performance, via the 
properties of the constituents. 

The deformations caused by matrix cracking, in 
conjunction with interface debonding and sliding, ex- 
hibit three regimes that depend on the magnitude of 
the debond stress, ~ .  In turn, ~i depends on the 
debond energy through the relationship [33] 

~ i  ~- ( l / C l ) ( E m F i / e )  1/2 - (~T 

- c% - cy T (22a) 

which has a useful non-dimensional form 

Ei = ~ri/cr (22b) 

A mechanism map that identifies the three regimes is 
shown in Fig. 23 [17]. When Zi > 1, debonding does 
not occur, whereupon matrix crack growth is an en- 
tirely elastic phenomenon. When Ei < �89 small debond 
energy (SDE) behaviour arises. The characteristic of 
SDE is that the reverse slip length at the interface, 
upon complete unloading, exceeds the debond length. 
For SDE, Fi is typically small and does not affect 
certain properties, such as the hysteresis loop width. 
The term SDE is thus used, loosely, to represent the 
behaviour expected when F~ ..~ 0. An intermediate, 
large debond energy (LDE) regime also exists, when 
�89 ~< Zi ~< 1. In this situation, reverse slip is impeded by 
the debond. 

5.1. Basic mechanics 
The approach used to simulate mode I cracking under 
monotonic loading is to define tractions ob acting on 
the crack faces, induced by the fibres (Fig. 1) and to 
determine their effect on the crack tip by using the 
d integral [31, 57] 

~t ip = ~ -- f l  ~bdU (23) 

where f9 is the energy release rate and u is the crack 

opening displacement. Cracking is considered to pro- 
ceed when ~tip attains the pertinent fracture energy. 
Because the fibres are not failing, the crack growth 
criterion involves matrix cracking only. A lower 
bound is given by [57, 82] 

~tip = Fm( 1 - f )  (24) 

with F m being the matrix toughness. Upon crack ex- 
tension, f# becomes tke crack growth resistance, FR, 
whereupon 

FR = F m ( 1 - f ) + f i ~ b d U  (25) 

A traction law, ~b(U), is now needed to predict FR. 
A law based on frictional sliding along debonded 
interfaces has been used most extensively and appears 
to provide a resonable description of many of the 
observed mechanical responses (Equation 1). The trac- 
tion law also includes effects of the interface debond 
energy, Fi [33]. For many CMCs, Fi is small, as 
reflected in the magnitude of the debond stress, Zi. 

For a constant sliding stress, %, the sliding distance, 
l, in the absence of fibre failure, is related to the crack 
surface tractions, gb, by [13, 31, 33] 

= [REm(1 - - f ) / 2 " c o E r f ] ( c %  - -  ~h) (26) 

The sliding length is, in turn, related to the crack 
opening displacement. The corresponding traction 
law is [17, 31, 57] 

CYb --  ffYi = ( 2 ~ , Z o E L f u / R )  x/2 (27) 

where ~ is defined in Table III. 
The matrix fracture behaviour can also be described 

by using stress intensity factors, K. This approach is 
more convenient than the J integral in some cases: 
particularly for short cracks and for fatigue [31, 83]. 
To apply this approach, it is first necessary to specify 
the contribution to the crack opening induced by the 
applied stress, as well as that provided by the bridging 
fibres. For a plane strain crack of length 2a in an 
infinite plate, the contribution due to the applied 
stress is [84] 

uoo = (4 /EL)r~(a  2 - -  x2) U2 (28a) 

and that caused by bridging is 

= - (4/EL) ~o ~Yb(2)H d2 Ub (28b) 

with H being a weight function, The net crack opening 
displacement is 

u = uoo + Ub (29) 

The contribution to K from the bridging fibres is 
obtained using [84] 

( 2 ) 1 / 2 7  (~b(X)dx (30) 
K b = -- 2 Jo (a2~x2) ~ / 2  

with Clb given by Equation 27. The shielding asso- 
ciated with Kb leads to a tip stress intensity factor 

Kti p = K + K b (31) 

where K depends on the loading and specimen 
geometry. 
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A criterion for matrix crack extension, based on 
Ktip, is needed. For this purpose, to be consistent with 
the energy criterion (Equation 24), the critical stress 
intensity factor is taken to be 

Ktip = [ E F m ( l - f ) ]  '/2 (32) 

Then, the two approaches (K and f#) lead to the same 
steady-state matrix cracking stress. 

5.2. The  matr ix c rack ing  s t ress  
The preceding basic results can be used to obtain 
solutions for matrix cracking [13, 45, 57, 82, 83]. 
Present understanding involves the following factors. 
Because the fibres are intact, a steady-state condition 
exists wherein the tractions on the fibres in the crack 
wake balance the applied stress. This special case may 
be addressed by integrating Equation 23 up to a limit 
u = Uo. This limit is obtained from Equation 27 by 
equating c% to (3-. For SDE, this procedure gives [57] 

~Op = ((3" + O-T)3 E2( l  --f) 2R 
6%f2EfE2 (33) 

A lower bound to the matrix cracking stress, O-~, is 
then obtained by invoking Equation 24 such that [57] 

6"CFmf2Ef 11/3 O-T 
(~Ymc = EL i1 ~ e i 3  -- 

0 O-T O-me -- (34) 

In some cases, small matrix cracks can form at stresses 
below (Ym~ [6]. These occur either within matrix-rich 
regions or around processing flaws. The non-linear 
composite properties are usually dominated by fully 
developed matrix cracks that form at stresses above 
emr However, these small flaws may provide access of 
the atmosphere to the interfaces and cause degrada- 
tion. 

Analogous results can be obtained using stress 
intensity factors [31, 83]. For  a small centre crack in 
a tensile specimen, (K = O-/(TCa)I/2). Equations 30 and 
32 give a steady-state result, at large crack lengths 
[83] 

O-R~/2 
Ktip -- 61/2j-- (35) 

where J -  is a sliding index defined in Table III. When 
combined with the fracture criterion (Equation 32), 
the matrix cracking stress, ~m~ is predicted to be the 
same as that given by Equation 34. 

The K approach may also be used to define 
a transition crack length, at, above which steady-state 
applies. This transition length is given by [31, 83] 

at/R ~ Em[Tm(1 + ~)2(1 -f)*/ 'c~f*E2R] ~/3 (36) 

Namely, when the initial flaw size ai > at, cracking 
occurs at (3- = emr Conversely, when the initial flaws 
are small, al < at, it has been shown that [83] 

[ Kti  p ~ K 1 - 2~2(g  + 3.3)t/2 + __  (37) 

where g is a loading index defined as (Table III) 

6 ~ = 2R(1 -f)2E2cy/EfE~oaf2(1 - v 2) (38) 

This result for Ktip,  when combined with Equation 32, 
gives a revised matrix cracking stress, which exceeds 
(~mc �9 

Analogous results can be derived for the LDE re- 
gime. In this case, Equation 27 may be used with 
Equation 23 to derive an energy release rate, which 
can be combined with the fracture criterion (Equation 
24) to predict O-m~. The result is contained within the 
implicit formula 

[(CYmc + O-T)/O-Omc]3 - -  3[((Ymc + O-T)/o-~ (O-D/O-One) 2 

+ 3(CrD/a0mc) 3 = 1 (39) 

The trend in O-mc with debond stress is plotted on 
Fig. 23. 

5.3. Crack ev o lu t i o n  
The evolution of additional cracks at stresses above 
e~,~ is less well understood, because two factors are 
involved: screening and statistics [30, 85]. When the 
sliding zones between neighbouring cracks overlap, 
screening occurs and ~tip differs from, Nop. The rela- 
tionship is dictated by the location of the neighbour- 
ing cracks. When a crack forms midway between two 
existing cracks with a separation 2d, subject to SDE, 
Ntip is related to Nop by [30] 

-~tip/~0p 

and 

~t ip /~tOp 

= 4(d/2E) 3 for 0 ~< d/# ~< 1 (40) 

= 1 - 4(l -- d/2Y) 3 

When d is sufficiently small ~tip 

for 0 ~ d/l <~ 2 

(41) 

is independent of the 
stress. Once this occurs, f~tlp cannot increase and is 
unable to again satisfy the matrix crack growth cri- 
terion (Equation 24). This occurs with spacing, ds, at 
an associated stress ~s (Fig. ! 1). This saturation spac- 
ing is given for SDE materials by 

ds/R = Z[Fm(1- f )2EfEm/f~2ELR]  1/3 (42) 

Note that this result is independent of the residual 
stress, because the terms containing (~u + eft) in 
Equations 26 and 33 cancel when inserted into Equa- 
tion 40. The coefficient Z depends on the spatial 
aspects of crack evolution: periodic, random, etc. 
Simulations for spatial randomness indicate that 
Z = 1.6 [ 30 ] .  

In addition to these screening effects, the actual 
evolution of matrix cracks at stresses above O-too is 
governed by statistics that relate to the size and spatial 
distribution of matrix flaws. If this distribution is 
known, the evolution can be predicted. Such statistical 
effects arise when the matrix flaws are smaller than the 
transition size, at, at which steady-state commences 
(Equation 36). In this case, a flaw size distribution 
must be combined with the short crack solution for 

3 8 7 2  
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Figure 24 (a) Simulation of crack evolution for various matrix flaw 
distributions characterized by Xs when the shape parameter  co = 2. 
(b) Evolution of matrix crack density with stress for unidirectional 
SiC/CA& 

tatively similar to those measured by experiment 
(Fig. 24b). Moreover, the values found for co are in 
a reasonable range (m~, = 2o)~ 4-8). However, be- 
cause co and X+ are not known, a priori, in practice this 
approach becomes a fitting procedure rather than 
a predictive model. Despite this limitation, it has been 
found that a simple formula can be used to approxim- 
ate crack evolution in most CMCs [4], given by 
(Fig. 24b) 

d ~ ds[6~/6~o - 13 (45) 
[6-/(~Ymc- 13 

Analogous results can be derived for LDE, with the 
debond length given by Equation 28b and the refer- 
ence energy release rate by Equation 39. 

5.4. Cons t i tu t i ve  law 
Analyses of the plastic strains caused by matrix cracks, 
combined with calculations of the compliance change, 
provide a constitutive law for the material. The impor- 
tant parameters are the permanent strain, So, and the 
unloading modulus,/~. These quantities, in turn, de- 
pend on several constituent properties; the sliding 
stress, z, the debond energy, Fi, and the misfit strain, 
fl. The most important results are summarized below. 

Matrix cracks increase the elastic compliance. Nu- 
merical calculations indicate that the unloading elastic 
modulus, E*, is given by [20] 

EL~E* - 1 = ( R / f f ) ~ ( f ,  Ej. /Em) (46) 

where d is the function plotted in Fig. 25. The matrix 
cracks also cause a permanent strain associated with 
relief of the residual stress. This strain, ~*, related to 
the modulus and the misfit stress by (Fig. 26) [203 

e* --- (~T(1/E* -- 1/EL) (47) 

The preceding effects occur without interface sliding. 
The incidence of sliding leads to plastic strains that 
superpose on to ~*. The magnitude of these strains 
depends on Z~ (Fig. 23) and on the stress relative to the 
saturation stress, ~s. Because saturation arises when 
the slip zones from neighbouring cracks overlap, the 
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Ktip (Equation 37) in order to predict crack evolution. 
At the simplest level, this has been done by assuming 
an exponential distribution for the matrix flaw size 
[863 

qb = exp(L /L , ) (a t~a)  ~' (43) 

where qb is the fraction of flaws in a composite, length 
L, having size larger than a, co is a shape parameter 
related to the Weibull modulus for the matrix, 
(co = rnm/2 ) and L ,  is a scale parameter 

L ,  = X+fm~ (44) 

with {me being the slip distance at ~ = (Ym~ and X+ 
a flaw-size coefficient. The condition X+~< 1 corres- 
ponds to a high density of matrix flaws already large 
enough to be at steady-state. Conversely, X+ > 1 refers 
to a situation wherein most matrix flaws are smaller 
than the transition size, at. 

Simulations can be performed in which the key 
variables are the shape parameter co and the scale 
parameter X+. The simulated crack densities (Fig. 24a) 
indicate a sudden burst of cracking at ~ = CYmc, when 
;L~ < 1, followed by a gradual increase with continued 
elevation of the stress. In contrast, when X~ >> 1, the 
cracks evolve more gradually with stress, reaching 
saturation at substantially higher levels of stress. 
(Nevertheless, the saturation spacing remains insensi- 
tive to ;L+ [86].) These simulated behaviours are quali- 

Figure 25 Effects of modulus  mismatch and fibre volume fraction 
on the elastic compliance. 
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saturation stress may first be estimated from Equation 
26 by equating f and ~/,. This gives 

2% ff~ Ef f  
% - o i  ~ ( 4 8 )  

REm(1 - - f )  

5.4. 1. Stresses below saturation 
5.4.1.1. Small debond energy. For SDE, when 
o < ~s, the unloading modulus/~ depends on %, but 
is independent of Fj and f~. However, the permanent 
strain, %, depends on F~ and fL as well as %. These 
differing dependencies of E and eo on constituent 
properties have the following two implications. (i) To 
simulate the stress-strain curve, both ao and E are 
required. Consequently, %, F~ and ~ must be known. 
(ii) The use of unloading and reloading to evaluate the 
constituent properties has the convenience that the 
hysteresis is dependent only on %. Consequently, pre- 
cise determination of % is possible. Moreover, with x0 
known from the hysteresis, both F~ and f~ can be 
evaluated from the permanent strain. The principal 
SDE results are as follows. 

3 8 7 4  

The permanent strain is [4, 8, 17] 

( e o - e * ) o f  -1 = 4 ( 1 - % 0 Z T + l - 2 Z  2 (49) 

where ~ is a hysteresis index (Table III) 

J(~ = b2(1 - aif) 2 R~Z/4d'coEmf 2 (50) 

and 

ET = cyv/6 (51) 

The hysteresis loop is parabolic and has a maximum 
width at half maximum, 8al/2 (Figs 9, 26) given by 

~el /2  = ~ / 2  (52) 

The unloading strain is (Fig. 26) 

A% = ~ (53) 

and the unloading modulus is 

( /~) -1  = (E * ) - 1  -Jr" ~ / ( ~  (54) 

5.4.1.2. Large debond energy. For LDE (Fig. 23), 
when o < 65, the unloading modulus depends on 
both z o and Fi (Fig. 26). There are also linear segments 
to the unloading and reloading curves. These seg- 
ments can be used to establish constructions that 
allow the constituent properties to be conveniently 
established. The principal results are as follows. The 
permanent strain is 1-17] 

(eo - e*)~f -1 = 2(1 - Y~i)(l - -  ~i -~ 2ET) (55) 

and the unloading modulus is 

( / ~ ) - i  = ( E , ) - I  + 4.T_,,(I - 2~)3~f/e (56) 

In this case, the hysteresis loop has parabolic and 
linear segments. The loop width depends on the mag- 
nitude of Zi. For intermediate values, �89 ~< Y.~ <~ k 

~3~/2 = Jit~[�89 - ( i  - 2~ , )  2 ]  (57) 

whereas for �88 ~< 2i ~< 1 

6~1/2 = 4#(F[1 - -  2 i ]  2 (58)  

5.4.2. Stresses above saturation 
At stress, o > Os, the crack density remains essentially 
constant and there is no additional stress transfer 
between the fibres and the matrix. In this case, the 
tangent modulus has been assumed to be given by 
El31 

Et = dO/dg; 

= f E f  (59) 

In practice, the tangent modulus is usually found to be 
smaller than predicted by Equation 59. Two factors 
are involved: changes in the sliding stress and fibre 
failure. At high fibre stresses, the Poisson contraction 
of the fibres reduces the radial stress, c%. Conse- 
quently, whenever the sliding stress can be represented 
by Equation 1, x decreases as the stress increases. The 
associated tangent modulus at fixed crack spacing is 
[33] 

d6-/d~ = blEmd/a3b2R[1 + 0 + exp( - -  0)] (60) 



where 0 = 2~tb~d/R, with tx being the friction coef- 
ficient. 

As the UTS is approached, significant fibre failures 
occur, which further reduce the tangent modulus. The 
basic stress-strain relationship is 1-66] 

{ Y ( - 1 ) " ~ 2 + n ( m + l )  1 
= fEf~ 1 + , ~  2n! L 1 +n(m+ 1) 

(Err162 "(m+ "} (61) x 

The hysteresis behaviour also changes once satura- 
tion has been achieved, although initial unloading is 
still parabolic, but then becomes linear. The loop 
width eventually reaches 

61~1/2 = 2zod~/gfR (62) 

can be used to scale d~ in accordance with 

j 3  ~ EfR2/.C2EL (63) 

It is also possible to estimate ~m~ from the constituent 
properties, by using Equation 39. Then Equation 48 is 
used to estimate r 

When d(~) has been established in this manner, 
stress-strain curves can be simulated for one-dimen- 
sional materials. Internal consistency recognizes that 
both d~ and r depend on to and F~. In addition, 
(~mc depends on the misfit stress o T. However, d~ is r~ T 
independent. Based on this approach, simulations 
have been used to conduct sensitivity studies of the 
effects of constituent properties on the inelastic strain. 
Examples (Fig. 27) indicate the spectrum of possibili- 
ties for CMCs. 

5.5. Simulat ions  
The preceding constitutive laws may be used to simu- 
late stress-strain curves for comparison with experi- 
ments. In order to conduct the simulations, the con- 
stituent properties, z, Fi and f2 are first assembled into 
the non-dimensional parameters Jr ,  ~ ,  and Z~. For 
this purpose, it is necessary to have independent 
knowledge of d(~). When this does not exist, an es- 
timation procedure is needed, based on Equation 45, 
through evaluation of d~, Omo and ~ .  The first step is 
to use Equation 42 to evaluate the saturation crack 
spacing aY~ from the constituent properties. One limita- 
tion of this procedure concerns the accuracy with 
which Z and Fm are known. An alternative option 
exists when crack spacing data are available for an- 
other CMC with the same matrix. Then, Equation 42 
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Figure 27 Simulated stress-strain curves for one-dimensional 
CMCs indicating the relative importance of constituent properties. 
(a) LDE, Fi = 2 J m  -2, ~s/~mc = 2; (b) SDE, E = 0, crs/crmc = 1.5. 

5.6. Experiments 
Matrix cracking and inelastic strain measurements 
have been made on two unidirectional CMCs [4, 48]: 
SiC/CAS, as well as SiC/SiC (produced by CVI). The 
stress-strain curves for these two materials (Fig. 28) 
indicate a contrast in inelastic strain capability. Some 
typical hysteresis measurements for these materials 
(Fig. 28) reveal major differences which must reflect 
differences in constituent properties. There are also 
considerable differences in the evolution of matrix 
cracks. An analysis of the hysteresis loops (Fig. 29) 
and the permanent strain (Fig. 30), as well as other 
characteristics, indicate the substantial differences in 
interface properties summarized in Table V. These 
differences arise despite the fact that the fibres are the 
same and that the fibre coatings are carbon in both 
cases. (Analysis of the coating structure by TEM pro- 
vides a rationale for specifying the differing interface 
responses in accordance with the basic model (Fig. 9).) 

The constituent properties from Table V can, in 
turn, be used to simulate the stress-strain curves 
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Figure 28 Stress-strain curves and typical hysteresis measurements 
obtained on SiC/CAS and SiC/SiC unidirectional composites. 
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development. One possibility involves measurements 
of the acoustic velocity, Va, which can be conducted 
continuously, during testing I-81]. These measurement 
relate to changes in the elastic modulus E* as matrix 
cracks develop (E*= poV2). This modulus can be 
related to the crack spacing, through a model (Equa- 
tion 46). 

There has been debate about the matrix cracking 
stress, Omr and its interpretation upon comparison 
with experimental measurements. When adequate in- 
dependent measurements of constituent properties 
have been measured (Fig. 32), it has been found [61] 
that the stress at which significant inelastic strain 
occurs always exceeds (Ymr given by Equation 39. This 
stress may thus be interpreted as the stress at which 
matrix cracking is suff• extensive to cause de- 
tectable inelastic strain. It thus has a similar inter- 
pretation to the yield strength (or proof stress) in 
metallic systems. It may be used as a basic strength 
parameter relevant to the simulation of stress-strain 
curves, as well as calculations of stress redistribution. 
However, small matrix cracks form at stresses below 
~m~ [6]. These arise in heterogeneous regions of the 
composite, where interactions occur between small 
matrix flaws and the stress field. Such flaws are most 

Figure 30 Analysis of permanent strains for unidirectional ( I )  
SiC/CAS and (El) SiC/SiC. 

(Fig. 31). The agreement with measurements affirms 
the simulation capability, whenever the constituent 
properties have been obtained from completely inde- 
pendent tests (Table II). This has been done for the 
SiC/CAS material, but not yet for SiC/SiC. While the 
limited comparison between simulation and experi- 
ment is encouraging, an unresolved problem concerns 
the predictability of the saturation stress, 6~. A related 
issue concerns the necessity for matrix crack density 
information. Again, additional insight is needed to 
establish meaningful bounds. Meanwhile, experi- 
mental methods that provide crack density informa- 
tion in an efficient, straightforward manner require 
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Figure 32 A comparison between measured and predicted values of 
the matrix cracking stress for two unidirectional CMCs. 
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important when atmospheric degradation of the fibres 
is possible, because they provide pathways for ingress 
of the degrading species. Again, analogies with yield- 
ing in metals may be useful. Notably, slip over small 
distances (within grains) occurs in metals at stresses 
appreciably below the macroscopic yield strength. 
Such slip is important in fatigue, etc., but is incidental 
to the plastic strain that causes stress redistribution. 

6. Mat r ix  cracking in two-d imens iona l  
materials 

General loadings of two-dimensional CMCs involve 
mixtures of tension and shear. For design purposes, it 
is necessary to have models and experiments that 
combine these loadings. Matrix cracking and fibre 
failure are the basic phenomena that dictate all of the 
non-linearities. However, there are important differ- 
ences between tension and shear. The behaviour sub- 
ject to tensile loading has been widely investigated 
[45, 53, 87-92]. The behaviour in shear is only ap- 
preciated at an elementary level [25]. Furthermore, 
the intermediate behaviour has had even less study 
[88, 93]. Nevertheless, the basic concept is clear. It is 
required that matrix cracking, as well as fibre failure, 
phenomena be incorporated into the models in a con- 
sistent manner, such that interpolation approaches 
can be devised and implemented, which interrelate the 
tensile and shear properties. 

6.1. Tensile properties 
General comparison between the tensile stress-strain 
[~(e)], curves for one- two-dimensional materials 
(Fig. 33) provides important perspective. It is found 
that cy(e) for two-dimensional materials is quite closely 
matched by simply scaling down the one-dimensional 

curves by 1/2. The behaviour of two-dimensional ma- 
terials must, therefore, be dominated by the 0 ~ plies, 
because these plies provide a fibre volume fraction in 
the loading direction about half that present in one- 
dimensional material [4]. (Furthermore, because 
some of the two-dimensional materials are woven, the 
1/2 scaling infers that the curvatures introduced by 
weaving have minimal effect on the stress-strain beha- 
viour.) 

The most significant two-dimensional effects occur 
at the initial deviation from linearity. At this stage, 
matrix cracks that form either in matrix-rich regions 
or in 90 ~ plies evolve at lower stresses than cracks in 
one-dimensional materials. The associated non-lin- 
earities are usually slight and do not normally contrib- 
ute substantially to the overall non-linear response of 
the material. However, these cracks have important 
implications for oxidation embrittlement and creep 
rupture and require analysis. Matrix cracking in the 
90 ~ plies often proceeds by a tunnelling mechanism 
(Fig. 34). Tunnel cracking occurs subject to a lower 
bound stress cr~ [94, 95], given by 

with 

where 

E 0 . ~ -  

cr~ = cy ~ - erR(EL + E T ) / 2 E T  (64) 

cr ~ = ( E F , / t p ) t / z g ( f E f / E m )  (65) 

EL(1 + EL/ET)/2[EL/ET - v 2] (66) 

The function g depends quite strongly on whether the 
transverse fibres either remain in contact with matrix 
upon loading or separate, as plotted on Fig. 35. As 
loading continues up to stresses that exceed c~:, addi- 
tional cracks form in the 90 ~ plies (thickness, tv). These 
cracks have a spacing /2 that decreases as the stress 
increases. The consequence is a reduction in the 
modulus from Eo to /~. The relative unloading 
modulus, ff•/E, depends primarily on the crack density, 
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Figure 33 A comparison of stress-strain curves measured for one- 
and two-dimensional CMCs. The dotted lines labelled 1/2 (one- 
dimensional) represent the behaviour expected in two-dimensional 
materials when the 90 ~ plies carry zero load. (- -) SiC/CAS, ( ) 
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tp/f~, in the 90 ~ plies [95, 96]. The effect when the 
fibres are contacting is illustrated on Fig. 36. The ratio 
E/Eo is larger when the fibres separate. Note that, at 
large crack densities, a limiting value of/~ designated 
E~, is reached, given by 

ff~t/Eo = ELl(EL + ET) (67) 

The corresponding permanent strain is 

eo = ( l / E -  1/Eo)~"(EL + ET)/2EL (68) 

Examples of the overall stress-strain response are 
summarized in Fig. 37 [95]. These curves were ob- 
tained by first establishing the change in crack spac- 
ing,/S, with stress and then adding the elastic strain 
(based on/~, Fig. 36) to the permanent strain (Equa- 
tion 68) to obtain the total strain. In practice, the 
stresses at which these cracks evolve may be larger, 
because the formation of cracks, at stresses above or,, 
depends on the availability of flaws in the 90 ~ plies. 

Lateral extension of these tunnel cracks into the 
matrix of the 0 ~ plies (Fig. 34) results in behaviour 
similar to that found in one-dimensional material. 
Moreover, if the stress ~s ~ acting on the 0 ~ plies is 
known, the one-dimensional solutions may be used 
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Figure 36 The change in unloading compliance caused by cracks in 
the 90 ~ plies. 

3 8 7 8  

directly to predict the plastic strain. Otherwise, this 
stress must be estimated [95]. For a typical 0/90 
system, cr ~ must range between 8 and 26, depending 
upon the extent of matrix cracking in the 90 ~ plies and 
upon ET/EL. Preliminary analysis has been conducted 
using, cy ~ = 26, as implied by the comparison between 
one- and two-dimensional stress-strain curves 
(Fig. 33). Additional modelling on this topic is in pro- 
gress. 

Using this simplified approach, simulations of 
stress-strain curves have been conducted [97,98]. 
These curves have been compared with experimental 
measurements for several two-dimensional CMCs. 
The simulations lead to somewhat larger flow 
strengths than the experiments, especially at small 
inelastic strains. To address this discrepancy, further 
modelling is in progress, which attempts to couple the 
behaviour of the tunnel cracks with the matrix cracks 
in the 0 ~ plies. 

6.2. Shea r  proper t ies  
The matrix cracking that occurs in two-dimensional 
CMCs, subject to shear loading depends on the load- 
ing orientation and the properties of the matrix. Two 
dominant loading orientations are of interest: in-plane 
shear along one fibre orientation and out-of-plane (or 
interlaminar) shear. The key difference between these 
loading orientations concerns the potential for inter- 
action between the matrix cracks and the fibres 
(Fig. 38). For inplane loading, the matrix crack must 
interact with the fibres (Fig. 38a). Conversely, for the 
out-of-plane case, matrix cracks evolve without signif- 
icant fibre interaction (Fig. 38b). Such interactions im- 
pede matrix crack development. Consequently, the 
in-plane shear strength always exceeds the inter- 
laminar shear strength. 

6 . 2 .  1. I n - p l a n e  s h e a r  
Experiments that probe the in-plane shear properties 
have been performed by using Iosipescu test speci- 
mens [25]. A summary of experimental results (Fig. 6) 
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Figure 38 Schematic illustration of the two modes of shear damage: 
(a) in-plane (b) interlaminar. 

modulus matrices result in low ductility. This behavi- 
our has been rationalized in terms of the effect of 
matrix modulus on the bending deformation experi- 
enced by fibres between matrix cracks [25]. As yet, 
there have been no calculations that address this phe- 
nomenon. 

6.2.2. Interlaminar shear 
The matrix cracks that form upon interlaminar shear 
loading and provide the plastic strains are material 
dependent. The simplest case (Fig. 38b) involves mul- 
tiple tunnel cracks that extend across the layer and 
orient normal to the maximum tensile stress within 
the layer [93]. In other cases, the matrix cracks are 
confined primarily to the matrix-only layers between 
plies [60]. A general understanding of these different 
types of behaviour does not yet exist. 

When the interlaminar cracks form by tunnelling, 
the solutions have a direct analogy within the trans- 
verse cracking results described above [39]. In shear 
loading, the tunnel cracks evolve and orient such that 
a mode II crack develops, as sketched in Fig. 40. The 
evolution of the echelon array of cracks has been 
analysed and shown to occur in accordance with the 
stress-displacement curve plotted on Fig. 41 [39]. 

indicates that the matrix has a major influence on the 
shear flow strength, % and the shear ductility, u 
Moreover, it has been found that the shear flow 
strengths can be ranked using a parameter, ~/r de- 
rived from the matrix cracking stress in the absence of 
interface sliding [57], given by 

= (rm/RG) 1/2 (69) 

The results from Fig. 6, ranked in this manner, are 
plotted on Fig. 39. The property of principal import- 
ance within ~tK is the shear modulus, G, which reflects 
the increase in compliance caused by the matrix 
cracks. However, it remains to develop a model that 
gives a complete relationship between the composite 
strength and the constituent properties. 

The shear ductility also appears to be influenced by 
the shear modulus, but in the opposite sense: high 

Crack propagation direction 
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Figure 40 A schematic illustration of echelon cracks that evolve 
into a mode II failure. 
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There is a critical shear stress, ~, at which inter- 
laminar shear failure occurs, given by 

~ ~ 1 . 5 ( G r , / t p )  ~/2 (70) 

where tp is now the thickness of the material layer that 
governs cracking. There must also be effects of resid- 
ual stress, but these have yet to be included in the 
model. The form of the critical shear stress relation 
(Equation 70) is the same as that for transverse tunnel 
cracking (Equation 64), verifying that these two phe- 
nomena are interrelated. The elastic properties dictate 
whether ~o or cr~ is the larger: usually ~ < o~ because 
G < E .  

6.3. Transverse  tensi le  propert ies  
CMCs with two-dimensional fibre architecture are 
susceptible to interlaminar cracking in various com- 
ponent configurations (Fig. 42). In such cases, as the 
crack extends through the component, conditions 
range from mode I to mode II. Tests and analyses are 
needed that relate to these issues. Most experience has 
been gained from PMCs [99]. The major issue is the 
manner whereby the interlaminar (transverse) cracks 
interact with the fibres. In principle, it is possible to 
conduct tests in which the cracks do not interact. In 
practice, such interactions always occur in CMCs, as 
the crack front meanders and crosses over inclined 
fibres [100,101]. These interactions dominate the 
measured fracture loads in conventional cantilever 
(DCB) specimens, as well as in flexure specimens 
[102, 103]. Some typical results for the transverse 
fracture energy (Fig. 43), indicate the large values 
(compared with Fm ~ 20 J m-2) induced by these in- 
teractions. 

M•• 2tb 
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Figure 42 Schemat ic  i l lus t ra t ion  of the var ious  modes  of t ransverse  
cracking in CMCs. (a) Cantilever beam, (b)C-specimen, (c) 
T-junction, (d) tunnel cracks. 
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Analysis indicates that large-scale bridging (LSB) is 
involved and the bridging behaviour can be explicitly 
ascertained from the measured curves [102]. For the 
particular case of a DCB specimen (Fig. 42a), the 
J integral is explicitly defined in terms of the bending 
moment, M, and the traction law [12]. For example, 
the steady-state resistance, Fs, for a linear softening 
traction law, is 

Fs 2 3 = 12Ms/ELtb 

= CrsUs/2 +Fm (71) 

and the zone length at steady-state is 

Ls = ( E u s / 3 C y s ) l / 4 t  3/4 (72) 

where 2t b is the DCB beam thickness, Ms is the ben- 
ding moment, with the quantities % and Ls defined 
on Fig. 43. Experimental measurements made with 
DCB specimens can be used to evaluate the para- 
meters, os and us, by simply fitting the data to Equa- 
tions 71 and 72. This information can then be used to 
predict F~ and FR for other configurations. 

An example is given for SiC/CAS composites 
(Fig. 43). Experimental results for this material I-t00] 
give us ~ 100 gm and crs ~ 10 MPa. One application 
of these results is the prediction of the tunnel cracking 
found in 0/90 laminates (Equation 64). The analysis of 
tunnel cracking [95] has established that for typical 
laminate thicknesses, the crack opening displacements 
are small (< 1 lam). For such small displacements, 
there is a negligible influence of the fibres. Conse- 
quently, Fg ~ F m (1 - f ) .  Other applications to C-spe- 
cimens and T-junction are in progress. 

An obvious limitations of the procedure is the un- 
certainty about the manner whereby the matrix crack 
interacts with the fibres in other geometries and hence, 
the universality of % and us. This is a topic for further 
research. 

7. Stress redistr ibution 
7.1.  B a c k g r o u n d  
CMCs usually have substantially lower notch sensitiv- 
ity than monolithic brittle materials and, in several 



cases, exhibit notch insensitive behaviour I-2, 3]. This 
desirable characteristic of CMCs arises because the 
material may redistribute stresses around strain con- 
centration sites. Notch effects appear to depend on the 
class of behaviour. Moreover, a different mechanics is 
required for each class, because the stress redistri- 
bution mechanisms operate over different physical 
scales. Class I behaviour involves stress redistribution 
by fibre bridging/pull-out, which occurs along the 
crack plane [12, 104, 105]. Large-scale bridging mech- 
anics (LSBM) is preferred for such materials. Class II 
behaviour allows stress redistribution by large-scale 
matrix cracking [-2] and continuum damage mechan- 
ics (CDM) is regarded as most appropriate. Class III 
behaviour involves material responses similar to those 
found in metals, and a comparable mechanics might 
be used [-26, 27]: either LEFM for small-scale yielding 
or non-linear fracture mechanics for large-scale yield- 
ing. Because a unified mechanics has not yet been 
identified, it is necessary to use mechanism maps that 
distinguish the various classes (Figs 3 and 4). 

7.2. Mechanism transitions 
The transition between class ! and class II behaviour 
involves considerations of both matrix crack growth 
and fibre failure. One hypothesis for the transition 
may be analysed using LSBM. Such analysis allows 
the condition for fibre failure at the end of an un- 
bridged crack segment to be solved simultaneously 
with the energy release rate of the matrix front. The 
latter is equated to the matrix fracture energy [77]. By 
using this solution to specify that fibre failure occurs 
before the matrix crack extends into steady-state, class 
I behaviour is presumed to ensue. Conversely, class II 
behaviour is envisaged when steady-state matrix 
cracking occurs prior to fibre failure. The resulting 
mechanism map involves two indices (Table III) 
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Figure 44 Effects of relative notch size on the UTS: ( - - - )  hole, 
( - - - - - )  notch. Also shown are experimental data for a SiC/C 
material (vertical bars). 

and 

~ll = crm~/S (74) 

With 5 p and ~# as coordinates, a mechanism map may 
be constructed that distinguishes class I and class II 
behaviour (Fig. 3). While this map has qualitative fea- 
tures consistent with experience, the experiments re- 
quired for validation have not been completed. In 
practice, the mechanism transition in CMCs probably 
involves additional considerations. 

The incidence of class III behaviour is found at 
relatively small magnitudes of the ratio of shear 
strength, % to tensile strength S. When xs/S is small, 
a shear band develops at the notch front and extends 
normal to the notch plane. Furthermore, because "c, is 
related to G, the parameter G/S is selected as the 
ordinate of a mechanism map. Experimental results 
suggest that class III behaviour arises when G/S ~ 50 
(Fig. 4). 

7.3. Mechanics methodology 
7.3. 1. Class I ma te r i a l s  
The class I mechanism, when dominant, has features 
compatible with LSBM [104-106]. These mechanics 
may be used to characterize effects of notches, holes 
and manufacturing flaws on tensile properties, when- 
ever a single matrix crack is prevalent. For cases 
wherein the flaw or notch is small compared with 
specimen dimensions, the tensile strength may be plot- 
ted as functions of both flaw indices: s~' b and d p  
(Fig. 18). For the former, the results are sensitive to the 
ratio of the pull-out strength, Sp, to the UTS [78]. 
These results should be used whenever the unnotched 
tensile properties are compatible with global load 
sharing. Conversely, ~p  should be used as the notch 
index when the unnotched properties appear to be 
pull-out dominated. 

When the notch and hole have dimensions that are 
a significant fraction of the plate width (ao/b > 0), net 
section effects must be included [7, 8]. Some results 
(Fig. 44) illustrate the behaviour for different values of 
the notch sensitivity index, d .  Experimental valida- 
tion has not been undertaken, although partial results 
for one material (SiC/CB) are compatible with LSBM 
[27], as shown for data obtained with centre notches 
and holes (Fig. 44). The promising feature is that 
LSBM explains the difference between notches and 
holes (upon requiring that d ,,~ 0.4). 

Z3.2. Class II matorials 
The non-linear stress-strain behaviour governed by 
matrix Cracking (expressed through /~, Equation 56 
and go, Equation 55) provides a basis for a damage 
mechanics (CDM) approach that may be used to pre- 
dict the effects of notches and holes. Such develop- 
ments are in progress. (An important factor that 
dictates whether continuum or discrete methods are 
used concerns the ratio of the matrix crack spacing to 
the radius of curvature of the notch.) In practice, 
several class II CMCs have been shown to exhibit 
notch insensitive behaviour, at notch sizes up to 5 mm 
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[2, 3]. The notch insensitivity is manifest in the effect 
of the relative notch size, ao/b, on the ratio of the UTS 
measured in the presence of notches (designated S*), 
to the strength in the absence of notches (designated 
S). Results for SiC/CAS are illustrated on Fig. 45. In 
this material, the non-linearity provided by the matrix 
cracks allows sufficient stress redistribution that the 
stress concentration is eliminated. This occurs despite 
the low ductility ( < 1%). A CDM procedure capable 
of predicting this behaviour will be available in the 
near future, using the stress-strain simulation capabil- 
ity based on constituent properties, (Figs 25,35 
and 36). 

This formula applies when ( , /ao~2.  At smaller 
lengths, the relationship is parabolic. Calculations 
have indicated that this shear zone diminishes the 
stress ahead of the notch (Fig. 47), analogous to the 
effect of a plastic zone in metals. For C/C materials, it 
has been found that the shear band lengths are small 
enough that LEFM is able to characterize the experi- 
mental data over a range of notch lengths, such that, 
Klc ~ 16 M P a m  1/2 (Fig. 48). However, conditions 
must exist where LEFM is violated. For example, 
when (,/ao ~ 3, the stress concentration is essentially 
eliminated (Fig. 47) and the material must then be- 
come notch insensitive. Further work is needed to 
identify parameters that bound the applicability of 

7.3.3. Class III materials 
Class III behaviour has been found in several carbon 
matrix composites [26,27]. In these materials, the 
shear bands can be imaged using an X-ray dye penet- 
rant method. Based on such images, the extent of the 
shear deformation zone, E,, is found to be predictable 
from measured shear strengths, z, (Fig. 6), in approx- 
imate accordance wi,th (Fig. 46) 

f~/ao ~ a/~ - 1 (75) 
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LEFM, as well as establish the requirements for notch 
insensitivity. 

7.4. Measurements  
Notch sensitivity data (Figs 44, 45 and 48) provide an 
explicit measure of stress redistribution. However, fur- 
ther understanding requires techniques that probe the 

i 

//j.~ Elastic 
/ 

Calculated 
elastic strain 

~;~/L// Inelastic f 

/ i/ 

/! ~ Estimated 
stress 

Strain 
Figure 49 A schematic illustration of an approximate method for 
obtaining the stress by using the strain obtained from elastic calcu- 
lations. 

stress and strain around notches, as CMCs are loaded 
to failure. Many of the methods have been developed 
and used for the same purpose on PMCs [107, 108]. 
These techniques can measure both strain and stress 
distributions. 

Strain distributions are measured with high spatial 
resolution by using Moir6 interferometry. In this 
method, the fringe spacings relate to the in-plane dis- 
placements which, in turn, govern the strains. There 
has been only limited use of this technique for CMCs 
[109]. Preliminary measurements suggest that the in- 
elastic deformations result in strains somewhat larger 
than elastic strains. That the reduced stress concentra- 
tions are thus approximated by the lower stresses that 
arise upon inelastic deformation at fixed strain 
(Fig. 49). 

Because strain measurements appear to have min- 
imal sensitivity to the stress redistribution mechan- 
isms operative in CMCs, a technique that measures 
the stress distribution is preferred. One such method 
involves measurement of thermoelastic emission. This 
method relies on the rate of temperature rise, AT, that 
occurs when an element of the composite is subject to 
a hydrostatic stress rate, Adkk, under adiabatic condi- 
tions. The fundamental adiabatic relationship for 
a homogeneous solid is [110] 

Adkk = ( C v p o / ~ T o ) A J  ~ (76) 

where Cv is the specific heat at constant strain and Po 
is the density. One experimental implementation of 
this concept is a technique referred to a stress pattern 
analysis by thermoelastic emission (SPATE) [110]. It 

Figure 50 SPATE images obtained from a SiC/CAS composite after imposing three applied loads (a-c). The light regions along the notch 
plane are the zone at the highest stress. Note that this zone is not at the notch tip, but has displaced towards the centre. The load at (c) is 90% 
of the UTS. 
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involves the use of high sensitivity infrared detectors, 
which measure the temperature in a lock-in mode, as 
a cyclic stress is applied to the material. This feature 
essentially eliminates background problems and has 
good signal-to-noise characteristics. SPATE measure- 
ments are conventionally performed at small stress 
amplitudes, which elicit "elastic" behaviour in the 
material. Experimental results [111] for a class II 
material (SiC/CAS) have confirmed that the stress 
concentration can be eliminated by matrix cracks 
(Fig. 50). In addition, results for a class III material 
(C/C) have provided a direct measure of the stress 
redistribution caused by shear bands (Fig. 51). 

Another method for strain measurement uses fluor- 
escence spectroscopy [112]. This method has particu- 
lar applicability to oxides, especially A1203 (either as 
fibre or matrix). The technique has the special advant- 
age that strains can be measured in individual fibres, 

such that stress changes caused by matrix cracks can 
be measured. Such measurements permit the material 
to be probed at the spatial resolution needed to under- 
stand mechanisms in detail 1,63]. 

8. Fatigue 
8.1. Basic p h e n o m e n a  
Upon cycling loading, matrix cracking and fibre fail- 
ure occur in brittle matrix composites 1,10,54,79, 
113, 114], in accordance with the same three classes 
found for monotonic loading (Fig. 2). The preced{ng 
matrix cracking and fibre failure models still apply, 
except that some additional factors need to be intro- 
duced 1-114]. The experimental results needed to es- 
tablish the specific fatigue mechanisms that operate in 
CMCs are sparse. However, similar mechanisms oper- 
ate in metal (MMC) and polymer (PMC) matrix com- 
posites. Observations, modelling and measurements 
performed on these materials provide insights that 
facilitate and hasten an understanding of the cyclic 
behaviour of brittle matrix composites. 

Among the new features that enter when cyclic 
loading is used are degradation mechanisms and, in 
some cases, revised crack growth criteria. The macro- 
scopic characteristics associated with the degradation 
mechanisms are fatigue life (or-N) curves (Fig. 52) and 
changes in compliance (Fig. 53). In addition, the hys- 
teresis loops change as fatigue proceeds (Fig. 54). Ana- 
lyses of compliance and hysteresis changes, as well as 
differences in fibre pull-out, indicate that the interface 
sliding stress changes upon fatigue. A cyclic sliding 
function, rf(N), thus becomes a new constituent prop- 
erty 1-114]. In some cases at high temperature and 
upon thermomechanical fatigue, a particularly low 
fatigue threshold stress (compared with the UTS) im- 
plies fibre strength degradation. Consequently, a cyc- 
lic fibre strength function, Se(N), may also be needed 
to predict fatigue life. 

Several possible matrix crack growth criteria are 
applicable to fatigue. These relate to the conditions at 
the crack front. When the matrix itself is susceptible to 
cyclic fatigue, the Paris law relates crack growth in the 

Figure 51 SPATE images obtained from a C/C composite at two 
load levels. In this case, the regions of highest stress are white. Note 
that the high stress zone spreads laterally as the load increases from 
(a) to (b). 

3884 

UTS, Sg 

.~ Fat igue 
th resho ld ,  ~h 

<~== (~mo . . . . . . . .  

0 I I I I I I 
10 ~ 101 10 2 10 3 10 4 10 ~ 10 6 

Cyc les  to  fa i lure ,  Nf 

Figure 52 A schematic illustration of typical isothermal fatigue 
data for CMCs. 



1.0 

,2. 
d 

C 

8 <  ~ c  

/ / / / / / / / / / / / / / / / / / / / / / / / /  

> 

N~ 

0 . (  I I I I I I 
100 101 10 z 103 104 10 ~ 106 

Cycles, N 

Figure 53 A schematic illustration of changes in modulus that 
occur in CMCs upon cycling. 

20o[ 
150 

cL 

100 

03 

50 

0 
0.00 0.30 

1 cycle 104 
/ / lO~ 

0.05 0.10 0.15 0.20 0.25 

Strain (%) 

Figure 54 Hysteresis loop measurements obtained upon fatigue for 
a unidirectional SiC/CAS. 

matrix to the stress intensity range at the crack front, 
AKtip, by [83] 

da/dN = 13(AKt~p/E)"f (77) 

where N is the number of cycles, nf is a power law 
exponent and 13 is a material dependent coefficient. In 
some cases, nf is sufficiently large that matrix crack 
growth is dominated by the peak value of either 
Kti p o r  cffti p. Then, the same criterion used for mono- 
tonic loading (Equation 24) may be preferred. Finally, 
when the dominant mechanism involves stress cor- 
rosion, crack growth can be described in terms 
~tlp through the commonly-used power law [115] 

da .~ /(fftip~q 
d-)- = ,,o ~ - ~ }  (78) 

where rio is a reference velocity, rl is the power law 
exponent and Nm is the matrix toughness, taken to be 
rm (1 -J0.  

8.2. Matrix crack growth  
When the interfaces are "weak", fibres can remain 
intact in the crack wake and cyclic frictional dissipa- 
tion resists fatigue crack growth [83]. The latter has 
been extensively demonstrated on titanium matrix 
composites reinforced with SiC fibres [116-119]. The 
essential features of the "weak" interface behaviour 
are as follows: intact, sliding fibres acting in the crack 
wake shield the crack tip, such that the stress intensity 
range at the crack tip, AKtlp, is less than that expected 
for the applied loads, AK. Using this approach, 
a simple transformation converts the monotonic crack 
growth parameters into cyclic parameters that can be 
used to interpret and simulate fatigue growth of each 
matrix crack. The key transformation is based on the 
relationship between interface sliding during loading 
and unloading, which relates the monotonic result to 
the cyclic equivalent through [83] 

(�89 Act) = (Yb(x/a, Aa/2) (79) 

where Act is the range in the applied stress. Notably, 
the amplitude of the change in fibre traction, Aa b, 
caused by a change in applied stress, Aa, is twice the 
fibre traction, orb, which would arise in the monotonic 
loading of a previously unopened crack, caused by an 
applied stress equal to half the stress change. This 
result is fundamental to all subsequent developments 
[83]. 

The stress intensity factor for bridging fibres subject 
to cyclic conditions is 

( a ) l / 2 f :  Z~Gb(X' A(Y) 
AKb(AO) = - 2 (a-~x2)l/-- ~ dx (80) 

which, with the use of Equation 79 becomes 

AKb(Acy) = 2K~"X(Acy/2) (81) 

where the superscript "max" refers to the maximum 
values of the parameters achieved in the loading cycle 
and thus, K~ '"x is the bridging contribution that would 
arise when the crack is loaded by an applied stress 
equal to Acy/2. Furthermore, because AK is linear, 
Equation 79 is also valid for the tip stress intensity 
factor 

AKti p = 2Ktip(Aer/2) (82) 

When the fibres remain intact, a cyclic steady-state 
(AK independent of crack length) is obtained when the 
cracks are long, given by the condition Ag ~< 4 [83], 
where AN is defined in Table III. The result is (for 
cyclic loading, the residual stress, q, does not affect 
AKtlp.) 

AKtip = A(~R1/Z(121/zAY) - 1 (83) 

where Ag- is defined in Table III. 
The corresponding crack growth rate is determined 

by using a crack growth criterion. When a Paris law 
applies, Equations 77 and 83 give [83] 

d N -  13 \ - 6 ~ / 2 ~ m J  (84) 

When the matrix does not fatigue, such that Equation 
24 represents the crack growth criterion, fatigue crack 

3 8 8 5  



growth after the first cycle is only possible whenever 
reduces upon cycling, as elaborated below. 
When short cracks are of relevance (Ag > 4) 

AKtip = Acr(~a) 1/2 

x 1 - - ~ ( A d  ~ + 6.6) 1/2 + ~ (85) 

Consequently, at fixed A~, AKt~p increases i~s the crack 
extends, and the Paris law matrix crack growth accel- 
erates. However, the bridged matrix fatigue crack al- 
ways grows at as lower rate than an unbridged crack 
of the same length. Consequently, the composite al- 
ways has superior crack growth resistance relative to 
the monolith. 

To incorporate the effects of fibre breaking into the 
fatigue crack growth model, a fibre failure criterion 
based on Sg has been used [120]. To conduct the 
calculation, once the fibres begin to fail, the unbridged 
crack length is continuously adjusted to maintain 
a stress at the unbridged crack tip equal to the fibre 
strength. These conditions lead to the determination 
of the crack length, af, when the first fibres fail, as 
a function of the fibre strength and the maximum 
applied load (Fig. 55). Note that when either the fibre 
strength is high or the applied stress is low, no corres- 
ponding value of af can be identified and the fibres do 
not fail. 

After the first fibre failure, fibres continue to break 
as the crack grows. Continuing fibre failure creates an 
unbridged segment larger than the original notch size. 
However, only the current unbridged length, 2au, and 
the current total crack length, 2a, are relevant [120] 
(Fig. 56). 

If the fibres are relatively weak and break close to 
the crack tip (ao/a -* 1), the bridging zone is always 
a small fraction of the crack length. In this case, there 
is minimal shielding. If the fibres are moderately 
strong, the fibres remain intact at first. But when the 
first fibres fail, subsequent failure occurs quite rapidly 
as the crack grows. Th e unbridged crack length then 
increases more rapidly than the total crack length and 
AKt i  p also increases as the crack grows. When the 
fibres are even stronger, first fibre failure is delayed. 
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But once such failure occurs, many fibres fail simul- 
taneously and the unbridged length increases rapidly. 
This causes a sudden increase in the crack growth rate. 
Finally, when the fibre strength exceeds a critical 
value, they never break and the fatigue crack growth 
rate always diminishes as the crack grows. The sensi- 
tivity of these types of behaviour to fibre strength is 
quite marked (Fig. 56), with the different types of be- 
haviour occurring over a narrow range of fibre 
strength. Some typical crack growth curves predicted 
using this approach are plotted in Fig. 57. This figure 
indicates the manner in which the crack extension, Aa, 
changes with the number of cycles, N, non-dimen- 
sionalized in accordance with Equation 81. Note that 
Aa accelerates at the onset of fibre failure. 

The results of Fig. 55 can be used to develop a cri- 
terion for a "threshold" stress range, A~t, below which 
fibre failure does not occur for any crack length. With- 
in such a regime, the crack growth rate approaches the 
steady-state value given by Equation 84, with all fibres 
in the crack wake remaining intact. The variation in 
the "threshold" stress range with fibrestrength is plot- 
ted on Fig. 58. The ordinate is essentially the peak 
stress normalized by the fibre strength, fSc,  whereas 
the abscissa is the notch length, ao, normalized by 
terms contained in Ad ~ (Table III). Note that, below 
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the line, composite failure does not occur, regardless of 
the number of fatigue cycles. Above the line, com- 
posite failure is inevitable. 

A notable feature of the predictions pertains to the 
role of the stress ratio, ~ ,  in composite behaviour. 
Prior to fibre failure, the crack growth rate is indepen- 
dent of Ns (except for its effect on the fatigue proper- 
ties of the matrix itself). However, ~ has a strong 
influence on the transition to fibre failure, as manifest 
in its effect on the maximum stress. It thus plays 
a dominant role in the fatigue lifetime. 

In most cases, CMCs are subject to multiple matrix 
cracking, which leads to reductions in the unloading 
modulus/ / ,  as well as changes in the hysteresis. This 
aspect of fatigue is described below for matrices with 
large nf. 
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Figure 59 (a) Effect of fatigue on the interface sliding stress (sche- 
matic representation). (b) Corresponding fatigue (or-N) curve. 

This threshold occurs after N~ cycles. At intermediate 
cycles, N < N~, the retained strength, SR, is derived as 

8 . 3 .  Mul t i p l e  c rack ing and fai lure 
As cycling proceeds, the hysteresis measurements 
show that the interface sliding stress, zf, decreases. As 
this occurs, there is a corresponding decrease in both 
the matrix cracking stress, ~mc (Equation 34) and the 
UTS (Equation 17a). The former effect leads to a per- 
manent strain and a diminished modulus. The latter 
effect dictates the fatigue threshold stress, S t h  , pro- 
vided that fibre strength degradation does not occur. 
Both types of behaviour can be readily predicted from 
the corresponding monotonic loading models, when- 
ever qzf(N) is known. 

Upon using the sliding function proposed for 
SiC/SiC composites 1-114] indicated on Fig. 59a 

SR/Sg = N -~/('+1) (88) 

These results can be combined to yield a fatigue (or-N) 
curve (Fig. 59b). Upon comparing with measured 
fatigue curves, these predictions provide a straightfor- 
ward means of determining whether fibre degradation 
occurs. 

The change in the unloading modulus during fa- 
tigue occurs at fixed crack density, as evident from 
Equation 54. For  example, when the sliding resistance 
has been reduced to steady-state, z,~, the reduction in 
the unloading modulus, A/~, is given by 

a s  (1 - E i / E , ) ( ~ o / ~ , s  - 1) 
/~  1 + (1 - f f ~ / E , ) ( ' C o / ~ , ,  - 1) 

(89) 

xf = ro N-~ 1 < N < N~ (86a) where E i is the initial unloading modulus. 

xf = %s N > Ns (86b) 

the following predictions can be generated. The thre- 
shold stress, Sth, when GLS applies, is given by insert- 
ing Equation 10 into Equation 17a with to replaced by 

"~ss 

St~/Sg = (x,s/ro) 1/("+1) (87) 

8.4. The rmomechan i ca l  fa t igue 
The basic matrix crack growth model can be extended 
to include thermomechanical fatigue (TMF). This can 
be achieved by means of another transformation 
wherein all of the stress range terms in Equations 
79-85, A~ and Ac% are replaced, by the tractions, At 
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and Atb, respectively. The specific transformations are 
1-1203. 

At = Ac + fEf(ocf - o%)AT (90a) 

Atb = ACYb + fEf(0~f -- ~m)AT (90b) 

where A T represents the temperature cycle and Ag the 
stress cycle. With these transformations, it is possible 
to represent the crack growth using two non-dimen- 
sional parameters, Ago and AgT (Table III) that spec- 
ify the stress cycling and the temperature cycling, 
respectively. It is immediately apparent that matrix 
crack growth and fibre failure are expected to be quite 
different for out-of-phaseand in-phase TMF. 

For materials in which ~m > ~f, in-phase TMF 
causes At to be less than that expected for stress 
cycling alone and vice versa. These effects are appar- 
ent from trends in the stress intensity range, AKti p 

(Fig. 60), calculated for cases wherein fibre failure does 
not occur. A key result is that, whereas AKti p always 
reduces upon initial crack extension either for stress 
cycling alone or for in-phase TMF, it can increase for 
out-of-phase TMF. Furthermore, for extreme ratios of 
Ad~ to Ad%, AKti p can  exceed that for the monolithic 
matrix without fibres. This result implies that the 
crack growth rate also exceeds that for the monolith. 

When fibre failure effects are introduced, in-phase 
and out-of-phase cycling result in behaviour that op- 
poses that associated with matrix crack growth. 
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Namely, the crack size af, at which fibre failure com- 
mences is smaller for in-phase loading than for out- 
of-phase loading (Fig. 61). Consequently, in order to 
ensure a threshold, the material is required to operate 
under conditions of fibre integrity. Then, in-phase 
TMF represents the more severe problem. 

8.5. Experimental results 
Experimental measurements performed on CMCs and 
titanium MMCs reflect features associated with the 
cyclic degradation of the sliding stresses and fibre 
strength and also provide a critique of crack growth 
criteria. These features are manifest in phenomena 
ranging from the growth characteristics of individual 
cracks, to changes in modulus to fatigue life curves. 
The salient cyclic and static fatigue characteristics are 
illustrated using various experimental results. 

The growth of individual cracks has been investig- 
ated on titanium MMCs, but not on CMCs. The crack 
growth trends found in titanium MMCs are in broad 
agreement with the predictions of the matrix crack 
growth models (Fig. 62), upon using a Paris law ap- 
plicable to the matrix (Equation 77). The results indi- 
cate that sliding stress, T, decreases upon cycling, 
because of "wear" mechanisms operating within the 
fibre coating [117-119, 121]. The reduction in z occurs 
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Figure 63 Modulus reduction found upon fatigue in a glass matrix 
composite [10]. 

after a relatively small number of cycles ( < 1000) and 
thereafter, remains at an essentially constant value, ~s, 
consistent with Equation 86. It is also evident for these 
materials that the fibre strength if not degraded by 
cyclic sliding of the interface, even after > 105 cycles. 

Tensile fatigue testing of CMCs has been conducted 
under conditions which produce multiple cracking. 
There are consequent changes in modulus and hyster- 

esis loop width, which relate to the fatigue life. Such 
results do not provide a critical test of the matrix crack 
growth criterion, but clearly illustrate the influence of 
cycling on the interface sliding stress and the fibre 
strength. Reductions in unloading modulus, /~, are 
found at fixed stress amplitude (Fig. 63) [10, 122]. In 
some cases, there is also a small subsequent increase. 
The modulus changes have been analysed, such that 
constituent properties during fatigue may be obtained. 
For example, measurements made for SiC/CAS (at 
frequencies < 10 Hz) have been correlated with the 
crack density (Fig. 64), such that comparisons may be 
made with predictions, based on Equation 89. This 
analysis indicates a substantial reduction in sliding 
stress, from % ,.~ 15 MPa for the pristine composite 
[121] to zss ~ 5 MPa. Fatigue life data for SiC/SiC 
(CVI) composites provide similar information [114]. 
Analysis of Sth, may be made using Equation 87, 
subject to the assumption that there is no fibre degra- 
dation. The analysis indicates that "~ss/Z ~ 0.38. This 
degradation in ~: is similar to that found for SiC/CAS 
and titanium MMCs, described above. A commonal- 
ity regarding the changes in interface sliding that oc- 
cur upon fatigue thus appears to be emerging. Note 
that the fatigue threshold stress, Sth, is a relatively 
large fraction of the UTS (St~/Sg ~ 0.7) when fatigue 
causes interface degradation, but does not degrade the 
fibres. The ratio Sth/Sg is larger than that usually 
found for metals. 

At higher frequencies (~  50 Hz), frictional heating 
also occurs, accompanied by a larger reduction in 

[-123]. The hypothesis is that the frictional heating 
causes the carbon fibre coating to be eliminated. Such 
behaviour would be consistent with that found upon 
isothermal heat treatment [56]. 

The occurrence of cyclic fatigue failure at peak 
stresses substantially lower than the UTS (Fig. 65) has 
been found at high temperatures and, especially, for 
TMF. Such results suggest that the fibre strength 
systematically diminishes for certain cyclic thermo- 
mechanical loadings. There are three primary mech- 
anisms of fibre weakening: abrasion, oxidation and 
stress corrosion. These mechanisms might be distin- 
guished in the following manner. The strength 

ua 1.0~ 
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~ 0.7 
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5 10 

Crack density, 1 / d (mm 4) 

Figure 64 (0) Influence of cyclic loading on modulus reduction as 
a function of crack density for a unidirectional CAS/SiC composite 
indicating that z has been decreased by fatigue. ( ) Theory. 
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degradation caused by stress corrosion occurs ab- 
ruptly, following time accumulated at peak load 
[115]. Abrasion occurs systematically with cyclic slid- 
ing at the interfaces (Fig. 66) and should be enhanced 
by out-of-phase TMF, which accentuates the sliding 
displacement. Oxidation is strictly time and temper- 
ature dependent. The strong effect of out-of-phase 
TMF on the fatigue life at high temperature [2] 
suggests that fibre degradation by abrasion is an 
important mechanism, perhaps accentuated by oxide 
formation at higher temperatures. Much additional 
study is required on this topic. 

In some CMCs, modulus changes and rupture oc- 
cur at constant stress [122]. Substantial matrix crack 
growth has been found at stresses below that required 
to produce cracks in short duration, monotonic tensile 
tests. Furthermore, the crack densities following ex- 
tended periods under load ( ~  106 s) are higher than 
those obtained in the short duration tests. The devel- 
opment of cracks with time and stress (Fig. 67) has 
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Figure 67 Experimental measurements and simulations at ( ) 
low and (---) high stress of matrix crack evolution in a SiC/CAS 
composite caused by stress corrosion at constant stress. Flexure: 
(A) 120 MPa, ([]) 130 MPa, ( I )  150 MPa, (0)  180 MPa, (&) 
200 MPa, ((3) 250 MPa. 

been considered to involve stress corrosion of the 
matrix. The behaviour is consistent with a revised 
matrix crack growth criterion (Equation 78) without 
any changes in the sliding stress. Fibre weakening may 
also be occurring by stress corrosion. 

9. Creep 
9.1. Basic behaviour 
The creep behaviour and relationships with constitu- 
ent properties are critically influenced by fibre failure, 
matrix cracks and interface debonding. Some of the 
basic stress-time characteristics are sketched in Figs 
68 and 69. When the fibres and matrix are intact and 
the interfaces are bonded, the creep deformations of 
the composite and the constituent properties are re- 
lated in a straightforward manner [124, 125]. When 
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S 

S 
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Figure 66 Mechanism of fibre degradation by fatigue, coupled with 
oxidation. (a) load cycling, (b) thermal cycling. 

Figure 68 Schematic illustration of creep anisotropy in unidirec- 
tional CMCs. 
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one constituent is elastic (fibre or matrix) and the 
other creeps, the longitudinal creep strain is transient 
and stops when all of the strain is transferred on to the 
elastic material (Figs 68 and 69) [124]. The creep law 
needed to describe this behaviour is 

1 ~K 3 . 1 gU = 2-~ gU + 81j(~kk 4- ~BcY e- sij 4- O~8ijJ" (91) 

where ~ is the strain rate, 6 is the stress rate, 6 u is the 
Kronecker delta, n is the creep index, s u is the devi- 
atoric stress and the effective stress, ~,, is defined by 

1/2 (Ye = (2SijSij) (92) 

and B is the rheology parameter for steady-state creep 

B = eo/r (93) 

with Go being the reference stress and 5o is the refer- 
ence strain rate. If the fibres are elastic and the matrix 
creeps, the stress in the matrix, Crm, evolves at constant 
applied stress as (n # 1) [124, 125] 

O.m(t) = {(n-- 1)fEfEmBt 1 ]1-. 4 
EL + [C~m(6)._1] ~ ( 9 )  

where am(0) is the matrix stress at time, t = 0. When 
the matrix stress, ~m--* 0, the stress on the fibres 
increases to, ~f = o r / ( 1 - f ) ,  such that the transient 
strain, st, is 

st = c y / E f ( 1 - f )  (95) 

Similar results apply when the fibres creep, but the 
matrix is elastic. 

When both the fibre and the matrix creep, steady- 
state develops in the composite following an initial 
transient (Fig. 69). The evolution of the matrix stress 

occurs according to [124-1 

If~mEfl(~m = B m ~  = -BfIc~--(1/f)c~m-lnf (96) 

where n m and nf are the creep indices for the matrix 
and fibres, respectively. When a steady-state is reached 
( 6  m = 0), (3" m and % are related by 

(1 - f )  cy (97) [c~'(Bm/Bf)]tl"f + ~ -(lm = 7 

and 

Crm(1 -- f )  + o f f =  ~ (98) 

These formulae can be solved for specific nm and ne to 
obtain CYm and c~f. With the stresses known the com- 
posite creep rate can be readily obtained. 

Transverse creep with well-bonded fibres is usually 
matrix dominated. Solutions which have been gener- 
ated for bonded rigid fibres thus have utility. All such 
solutions indicate that the creep attains steady-state, 
with a creep-rate lower than that for the matrix alone 
(Fig. 68). Moreover, strengthening solutions derived 
for transverse deformation with a power law harden- 
ing matrix (Fig. 70) also apply to a power law creeping 
matrix, in steady-state (with the strains becoming the 
strain rates). The reduction in creep rate depends on 
the power law exponent for the matrix and the spatial 
arrangement of the fibres. For a composite with 
a square arrangement of fibres, and a matrix subject to 
diffusional creep (nm = 1), because there is no creep in 
the fibre direction, z [124] 

gyy - g,x = (cyyy - Cyx,,)kl(f ) (99) 

with 

k10 c) = (3/4)[(1 - f ) / ( l  + 2 f ) ]  (I00) 

In essence, kl gives the reduction in creep-rate upon 
incorporating the bonded fibres. For non-linear ma- 
trices, the equivalent results have the form 

~xx = -- e,y =Bm(Gxx --CYyy)nm-- l(~xx -o'yy)k.(f) (101)  

where kn is a function of the fibre volume fraction and 
spatial arrangement. For  example, when n m = 5 and 
a square fibre array is used 

kn = 0 . 4 2 [ ( 1 - f i f o  _f2) ]5  (102) 

t f=0 .7  
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Figure 70 Transverse strength of a unidirectional composite with 
a power taw hardening matrix. 
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9.2. Effect of fibre failures 
When stresses are applied along the fibre axis in a sys- 
tem with a creeping matrix, the time-dependent stress 
elevation on the fibres may cause some fibre failures. 
Following fibre failure, sliding would initiate at the 
interface, accompanied by further creep in the matrix. 
The time constant for this process is much longer than 
that for the initial transient, described above, and can 
be analysed as a separate creep problem [124]. While 
the process in complicated, several factors are impor- 
tant. If the stress on the fibres reaches their strength, S, 
the composite will fail. Moreover, the relevant S is 
probably that with a small ~, associated with creep 
sliding of the interface. In this limit, composite failure is 
possible at all stresses above the "dry bundle" strength, 
Sb (Equation 17c). Conversely, the composite cannot 
rupture at stress below SD, unless the fibres are de- 
graded by creep. The dry bundle strength thus repres- 
ents a "threshold". At stresses below SD~ creep must be 
transient. 

At higher stresses, the fibres fracture and may frag- 
ment. Then, steady-state creep is possible (Fig. 68), 
proceeding in accordance with a creep law devised for 
a material with aligned rigid reinforcements of finite 
aspect ratio. This behaviour is represented by the 
Mileiko model [126]. The solution for a non-sliding 
interface is [124, 127] 

= BmCr"'(R/Lf)"=+Z~(nm,f) (103) 

where Ly is the fragment length and 

~:~a(nm'f) = 2"~+13x/2V31/2(2nmL 2-Uj + 1)1"= (1 __f)(n~-l)/2(D, m -- 1) 

(104) 

However, the fragment length decreases as the stress 
increases. This occurs in accordance with the scaling 
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Figure 71 A sketch indicating the longitudinal creep threshold and 
the behaviour above the threshold. The matrix alone has a power 
law exponent, nm. The composite has a higher exponent above the 
threshold associated with stress-induced fibre fragmentation. 
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[28] 

Lf/R ,'~ (Sc/~) m (105) 

Upon inserting Equation 105 into Equation 103, it is 
evident that steady-state creep-rate should occur with 
a large power law exponent, nm + m + mnm [124]. Such 
behaviour has been reported in composites with dis- 
continuous fibres [128]. The overall behaviour is 
sketched in Fig. 71. In practice, because of the large 
stress exponent at stress above Sb, adequate creep per- 
formance can only be ensured at stresses below Sb. 

9.3. Interface debonding  
While there are no solutions known to the authors for 
transverse creep with debonding interfaces, the analogy 
(noted above) between power law deformation and 
steady-state creep provides insight. Calculations of 
transverse deformation with and without interface 
bonding (Fig. 72) indicate a major strength degradation 
when debonding occurs [129, 130]. Furthermore, the 
composite behaviour approaches that for a body con- 
taining cylindrical holes. Creep results for porous bo- 
dies may thus provide rough estimates of the transverse 
creep strength when the interfaces debond. 

9.4. Matrix cracking 
In some CMCs, the fibres creep more readily than the 
matrix. Such materials include SiC/SiC and SiC/ 
Si3N 4. In this case, fibre creep and matrix cracking 
appear to proceed in a synergetic manner that acceler- 
ates the creep and causes premature creep rupture. 
The basic phenomenon is as follows. Creep in the fibre 
increases the stress on the matrix, as described above. 
Above a threshold, the stress on the matrix then ex- 
ceeds ~ (Equation 64), causing multiple matrix cracks 
to form in the 90 ~ plies. These cracks gradually extend 
into the 0 ~ plies, because creep of the fibres relaxes the 
bridging tractions. As a result, the stress at these 
locations is borne entirely by the fibres, which creep, 
without impediment, leading to rupture of the com- 
posite (Fig. 73). The creep analogy of the tunnelling 
stress, ~, (equation 67) represents a threshold stress. 
At stresses above cr~, matrix cracks eventually extend 
across the composite and the composite fails by fibre 
rupture. The rupture ductility of polycrystalline 
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Figure 73 Creep rupture data for a SiC/C composite which is 
susceptible to fibre creep and matrix cracking. 

ceramic fibres is typically quite low, because of void 
formation along the grain boundaries. Consequently, 
matrix cracking often leads to creep rupture with 
brittle characteristics. 

9.5. Strain recovery 
Because creep in composites redistributes stresses be- 
tween matrix and fibre, strain recovery must occur 
when the loads are removed [131]. This behaviour is 
well established for a system with one elastic constitu- 
ent and one viscoplastic constituent, in accordance 
with standard Kelvin concepts. Notably, the elastic 
stretch in one constituent is gradually relaxed when 
the load is removed. The specifics depend, of course, 
on the nature of the viscoplasticity. A simple example 
illustrates the salient phenomena. A composite with 
elastic fibres and a creeping matrix, loaded along the 
fibre direction, has been crept until the stress in the 
matrix is essentially zero (Fig. 74). The load is then 
removed. The instantaneous elastic shrinkage, As, 

must satisfy 

AS - (Ym 
Em 

&Or 
- ( 1 0 6 )  

Er 

The stresses after elastic unloading are thus 

fcYEm 
O ' m  - -  (1 --f)Ee (107a) 

CYf = C r E m / E  L (107b) 

Thereafter, holding at temperature causes o- m to relax 
according to Equation 94, with Crm(0) given by Equa- 
tions 107a and b. 

9.6. Experimental results 
Experimental data for a range of different composites 
are used to illustrate some of the features described 
above and to anticipate trends. The longitudinal beha- 
viour found when the fibres are elastic is addressed 
first. Results obtained on TiA1 reinforced with sap- 
phire fibres (Fig. 75) establish the existence of transient 
creep in the longitudinal orientation when the fibres 
are elastic and intact, but the matrix is subject to creep 
[132]. At higher loads, when some fibres fail, creep can 
continue and rupture may occur, as demonstrated by 
data obtained on a titanium matrix composite rein- 
forced with SiC fibres (Fig. 76). Removal of the load 
after creep results in reverse deformation, as demon- 
strated for a SiC/Si3N4 composite (Fig. 74). Upon 
using a creep index applicable to monolithic Si3N4 
(n = 2), the stress in the matrix relaxes in the manner 

= F fEfEmBt ( l - - f ) E L 1  - t  
~m L -~L foEm _] (108) 

Note that B has units (stress)-2. 
The inverse situation may also be important in 

some CMCs, wherein the fibres creep but the matrix is 
elastic [132, 133]. Typical examples include SiC/SiC 
and SiC/Si3N4 composites, which have SiC fibres with 
fine grain size (such as Nicalon). In these materials, 
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Figure 74 Creep recovery effects in a SiC/SiaN 4 with "elastic" 
fibres and a creeping matrix [131]. 
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Figure 77 Longitudinal creep of a SiC/CAS composite [11]. 

1 .2  

matrix cracks are created upon loading above a thre- 
shold stress, c% When these cracks exist, fibre creep 
results in continuous deformation and creep rupture 
(Fig. 73). However, if the stress is below the threshold, 
creep will occur in a transient manner [134]. 

When both the matrix and fibres creep, and there 
are no matrix cracks, continued deformation of the 
composite proceeds in the longitudinal orientation 
[11]. Results obtained on CAS/SiC (Fig. 77) verify 
that creep continues. However, interpretation is com- 
plicated by microstructural changes occurring in the 
fibres, which lead to creep hardening. The deforma- 
tion is thus entirely primary in nature. These results 
identify microstructural stability as an important fibre 
selection criterion. 

10. Challenges and opportunities 
Reasonable progress has been made in understanding 
inelastic strain mechanisms, although the continued 
development of models and experimental validation is 
necessary. It is now possible to appreciate how stress 
redistribution occurs and to characterize the notch 

sensitivity. The analysis of the degradation mechanism 
is much less mature. 

There are several challenges and opportunities that 
arise. With regard to the short duration performance, 
it is necessary to develop simple constitutive laws that 
can be used with finite element codes in order to 
calculate stresses around attachments, holes, etc. 
Mechanism-based models of the inelastic strain are 
preferred for this purpose. However, there is insuffi- 
cient basic understanding about the inelastic strains 
that occur upon shear loading and their dependence 
on constituent properties. Basic inelastic strain models 
with matrix cracks inclined to the fibres are needed to 
address this deficiency. 

Degradation mechanisms that operate upon cyclic 
loading in the presence of matrix cracks require con- 
certed study. Interface changes and fibre degradation 
are both possible. Moreover, there may be detrimental 
synergistic interaction with the environment. The 
models developed for MMCs indicate that the reten- 
tion of fibre strength upo n cyclic loading is parti- 
cularly important, because this strength governs the 
fatigue threshold. Mechanisms and models that pre- 
dict fibre strength degradation are critically impor- 
tant. 
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